knife |
hammer |
top 10 words in brain distribution (in article): produce form variety food common process type animal state world |
top 10 words in brain distribution (in article): form muscle energy power produce human time bone structure animal |
top 10 words in brain distribution (not in article): plant fruit grow seed leaf tree flower cell species sugar |
top 10 words in brain distribution (not in article): cell church vehicle fuel engine body wheel gas car brain |
times more probable under knife 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under hammer (words not in the model) | |
A knife'" is a handheld sharp-edged instrument consisting of a handle attached to a blade that is used for cutting. Knives were used at least two-and-a-half million years ago, as evidenced by the Oldowan tools. History. The earliest knives were shaped by knapping (percussive flaking) of rock, particularly harder rocks such as obsidian and flint. During the Paleolithic era Homo habilis likely made similar tools out of wood, bone, and similar perishable materials that have not survived. As recent as five thousand years ago, as advances in metallurgy progressed, stone, wood, and bone blades were gradually succeeded by copper, bronze, iron, and eventually steel. The first metal (copper) knives were symmetrical double edged daggers, which copied the earlier flint daggers. In Europe the first single edged knives appeared during the middle bronze age. Modern knives may be made from many different materials such as alloy tool steels, carbon fiber, ceramics, and titanium. Materials and construction. Today, knives come in many forms but can be generally categorized between two broad types: fixed blade knives and folding, or pocket, knives. Modern knives consist of a "blade" (1'") and "handle" (2'"). The blade edge can be plain or serrated or a combination of both. The handle, used to grip and manipulate the blade safely, may include the "tang", a portion of the blade that extends into the handle. Knives are made with partial (extending part way into the handle) and full (extending the full length of the handle, often visible on top and bottom) tangs. The handle can also include a bolster, which is a piece of material used to balance the knife, usually brass or other metal, at the front of the handle where it meets the blade. The blade consists of the "point" (3'"), the end of the knife used for piercing, the "edge" (4'"), the cutting surface of the knife extending from the point to the heel, the "grind" (5'"), the "cross-section" shape of the blade, the "spine", (6'"), the top, thicker portion of the blade, the "fuller" (7'"), the groove added to lighten the blade, and the "ricasso" (8'"), the thick portion of the blade joining the blade and the handle. The "guard" (9'") is a barrier between the blade and the handle which protects the hand from an opponent, or the blade of the knife itself. A "choil", where the blade is unsharpened and possibly indented as it meets the handle, may be used to prevent scratches to the handle when sharpening or as a forward-finger grip. The end of the handle, or "butt" (10'"), may allow a "lanyard" (11'"), used to secure the knife to the wrist, or a portion of the tang to protrude as a striking surface for pounding or glass breaking. Blade. Knife blades can be manufactured from a variety of materials, each of which has advantages and disadvantages. Carbon steel, an alloy of iron and carbon, can be very sharp, hold its edge well, and remain easy to sharpen, but is vulnerable to rust and stains. Stainless steel is an alloy of iron, chromium, possibly nickel, and molybdenum, with only a small amount of carbon. It is not able to take quite as sharp an edge as carbon steel, but is highly resistant to corrosion. High carbon stainless steel is stainless steel with a higher amount of carbon, intended to incorporate the better attributes of carbon steel and stainless steel. High carbon stainless steel blades do not discolor or stain, and maintain a sharp edge. Laminate blades use multiple metals to create a layered sandwich, combining the attributes of both. For example, a harder, more brittle steel may be sandwiched between an outer layer of softer, tougher, stainless steel to reduce vulnerability to corrosion. In this case, however, the part most affected by corrosion, the edge, is still vulnerable. Pattern-welding is similar to laminate construction. Layers of different steel types are welded together, but then the stock is manipulated to create patterns in the steel. Titanium is metal that has a better strength-to-weight ratio, is more wear resistant, and more flexible than steel. Although less hard and unable to take as sharp an edge, carbides in the titanium alloy allow them to be heat-treated to a sufficient hardness. Ceramic blades are hard, brittle, and lightweight: they may maintain a sharp edge for years with no maintenance at all. They are immune to common corrosion, and can only be sharpened on silicon carbide sandpaper and some grinding wheels. Plastic blades are not especially sharp and typically serrated. They are often disposable. Steel blades are commonly shaped by forging or stock removal. Forged blades are made by heating a single piece of steel, then shaping the metal while hot using a hammer or press. Stock removal blades are shaped by grinding and removing metal. With both methods, after shaping, the steel must be heat treated. This involves heating the steel above its critical point, then quenching the blade to harden it. After hardening, the blade is tempered to remove stresses and make the blade tougher. Mass manufactured kitchen cutlery uses both the forging and stock removal processes. Forging tends to be reserved for manufacturers' more expensive product lines, and can often be distinguished from stock removal product lines by the presence of an integral bolster, though integral bolsters can be crafted through either shaping method. Knives are sharpened in various ways. Flat ground blades have a profile that tapers from the thick spine to the sharp edge in a straight or convex line. Seen in cross section, the blade would form a long, thin triangle, or where the taper does not extend to the back of the blade, a long thin rectangle with one peaked side. Hollow ground blades have concave, beveled edges. The resulting blade has a thinner edge, so it may have better cutting ability for shallow cuts, but it is lighter and less durable than flat ground blades and will tend to bind in deep cuts. Serrated blade knives have a wavy, scalloped or saw-like blade. Serrated blades are more well suited for tasks that require aggressive 'sawing' motions, whereas plain edge blades are better suited for tasks that require push-through cuts (e.g., shaving, chopping). Fixed blade features. A fixed blade knife does not fold or slide, and is typically stronger due to the tang, the extension of the blade into the handle, and lack of moving parts. Folding blade features. A folding knife connects the blade to the handle through a pivot, allowing the blade to fold into the handle. To prevent injury to the knife user through the blade accidentally closing on the user's hand, folding knives typically have a locking mechanism. Different locking mechanisms are favored by various individuals for reasons such as perceived strength (lock safety), legality, and ease of use. Another prominent feature on many folding knives is the opening mechanism. Traditional pocket knives and Swiss Army Knives commonly employ the nail nick, while modern folding knives more often use a stud, hole, disk, or "flipper" | A hammer'" is a tool meant to deliver an impact to an object. The most common uses are for driving nails, fitting parts, and breaking up objects. Hammers are often designed for a specific purpose, and vary widely in their shape and structure. Usual features are a handle and a head, with most of the weight in the head. The basic design is hand-operated, but there are also many mechanically operated models for heavier uses. The hammer is a basic tool of many professions, and can also be used as a weapon. By analogy, the name "'hammer'" has also been used for devices that are designed to deliver blows, e.g. in the caplock mechanism of firearms. History. The use of simple tools dates to about 2,400,000 BCE when various shaped stones were used to strike wood, bone, or other stones to break them apart and shape them. Stones attached to sticks with strips of leather or animal sinew were being used as hammers by about 30,000 BCE during the middle of the Paleolithic Stone Age. Its archeological record means it is perhaps the oldest human tool known. Designs and variations. The essential part of a hammer is the head, a compact solid mass that is able to deliver the blow to the intended target without itself deforming. The opposite side of a ball as in the ball-peen hammer and the cow hammer. Some upholstery hammers have a magnetized appendage, to pick up tacks. In the hatchet the hammer head is secondary to the cutting edge of the tool. In recent years the handles have been made of durable plastic or rubber. The hammer varies at the top, some are larger than others giving a larger surface area to hit different sized nails and such, Mechanically-powered hammers often look quite different from the hand tools, but nevertheless most of them work on the same principle. They include: In professional framing carpentry, the hammer has almost been completely replaced by the nail gun. In professional upholstery, its chief competitor is the staple gun. Hammer as a force amplifier. A hammer is basically a force amplifier that works by converting mechanical work into kinetic energy and back. In the swing that precedes each blow, a certain amount of kinetic energy gets stored in the hammer's head, equal to the length "D" of the swing times the force "f" produced by the muscles of the arm and by gravity. When the hammer strikes, the head gets stopped by an opposite force coming from the target; which is equal and opposite to the force applied by the head to the target. If the target is a hard and heavy object, or if it is resting on some sort of anvil, the head can travel only a very short distance "d" before stopping. Since the stopping force "F" times that distance must be equal to the head's kinetic energy, it follows that "F" will be much greater than the original driving force "f" — roughly, by a factor "D" "d". In this way, great strength is not needed to produce a force strong enough to bend steel, or crack the hardest stone. Effect of the head's mass. The amount of energy delivered to the target by the hammer-blow is equivalent to one half the mass of the head times the square of the head's speed at the time of impact ([Formula 1]). While the energy delivered to the target increases linearly with mass, it increases geometrically with the speed (see the effect of the handle, below). High tech titanium heads are lighter and allow for longer handles, thus increasing velocity and delivering more energy with less arm fatigue than that of a steel head hammer of the same weight. As hammers must be used in many circumstances, where the position of the person using them cannot be taken for granted, trade-offs are made for the sake of practicality. In areas where one has plenty of room, a long handle with a heavy head (like a sledge hammer) can deliver the maximum amount of energy to the target. But clearly, it's unreasonable to use a sledge hammer to drive upholstery tacks. Thus, the overall design has been modified repeatedly to achieve the optimum utility in a wide variety of situations. Effect of the handle. The handle of the hammer helps in several ways. It keeps the user's hands away from the point of impact. It provides a broad area that is better-suited for gripping by the hand. Most importantly, it allows the user to maximize the speed of the head on each blow. The primary constraint on additional handle length is the lack of space in which to swing the hammer. This is why sledge hammers, largely used in open spaces, can have handles that are much longer than a standard carpenter's hammer. The second most important constraint is more subtle. Even without considering the effects of fatigue, the longer the handle, the harder it is to guide the head of the hammer to its target at full speed. Most designs are a compromise between practicality and energy efficiency. Too long a handle: the hammer is inefficient because it delivers force to the wrong place, off-target. Too short a handle: the hammer is inefficient because it doesn't deliver enough force, requiring more blows to complete a given task. Recently, modifications have also been made with respect to the effect of the hammer on the user. A titanium head has about 3% recoil and can result in greater efficiency and less fatigue when compared to a steel head with about 27% recoil. Handles made of shock-absorbing materials or varying angles attempt to make it easier for the user to continue to wield this age-old device, even as nail guns and other powered drivers encroach on its traditional field of use. War hammers. The concept of putting a handle on a weight to make it more convenient to use may well have led to the very first weapons ever invented. The club is basically a variant of a hammer. In the Middle Ages, the war hammer became popular when edged weapons could no longer easily penetrate some forms of armour. Symbolic hammers. The hammer, being one of the most used tools by "Homo sapiens", has been used very much in symbols and arms. In the Middle Ages it was used often in blacksmith guild logos, as well as in many family symbols. The most recognised symbol with a hammer in it is the Hammer and Sickle, which was the symbol of the former Soviet Union. The hammer in this symbol represents the industrial working class (and the sickle the agricultural working class). The hammer is used in some coat of arms in (former) socialist countries like East Germany. In Norse Mythology, Thor, the god of thunder and lightning, wields a hammer named Mjolnir. Many artifacts of decorative hammers have been found leading many modern practitioners of this religion to often wear reproductions as a sign of their faith. |