ratio of word probabilities predicted from brain for key and train

close this window

key

train

top 10 words in brain distribution (in article):
blade head cut metal century form shape design modern type
top 10 words in brain distribution (in article):
city state service street Unite town design power time station
top 10 words in brain distribution (not in article):
iron plant steel handle fruit hair tool produce grow seed
top 10 words in brain distribution (not in article):
build store house home card record bus sell department village
times more probable under key 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under train
(words not in the model)
A key'" is a device which is used to open a lock. A typical key consist of two parts: the "blade", which slides into the keyway of the lock and distinguishes between different keys, and the "bow", which is left protruding so that torque can be applied by the user. The blade is usually designed to open one specific lock, although master keys are designed to open sets of similar locks. Keys provide an inexpensive, though imperfect, method of authentication for access to properties like buildings and vehicles. As such, keys are an essential feature of modern living in the developed world, aing adorned by key fobs and known as a keychain. House keys. A house key'" is the most common sort of key. There are two main forms. The older form is for lever locks, where a pack of flat levers (typically between two and five) are raised to different heights by the key whereupon the slots or "'gates'" of the levers line up and permit a bolt to move back and forth, opening or closing the lock. The teeth or "'bittings'" of the key have flat tops rather than being pointed. Lever lock keys tend to be bigger and less convenient for carrying, although lever locks tend to be more secure. These are still common in, for example, many European countries. The more recent form is that for a pin tumbler cylinder lock. When held upright as if to open a door, a series of grooves on either side of the key (the key's "'profile'") limits the type of lock cylinder the key can slide into. As the key slides into the lock, a series of pointed teeth and notches allow pins to move up and down until those pins are in line with the shear line of the cylinder, allowing that cylinder to rotate freely inside the lock and the lock to open. These predominate in, for example, the United States of America. Car key. A "'car key'" or an "'automobile key'" is a key used to open and or start an automobile, often identified with the logo of the car company at the head. Modern key designs are usually symmetrical, and some use grooves on both sides, rather than a cut edge, to actuate the lock. It has multiple uses for the automobile with which it was sold. A car key can open the doors, as well as start the ignition, open the glove compartment and also open the trunk (boot) of the car. Some cars come with an additional key known as a "'valet key'" that starts the ignition and opens the drivers side door but prevents the valet from gaining access to valuables that are located in the trunk or the glove box. Some valet keys, particularly those to high-performance vehicles, go so far as to restrict the engine's power output to prevent joyriding. Recently, features such as coded immobilizers have been implemented in newer vehicles. More sophisticated systems make ignition dependent on electronic devices, rather than the mechanical keyswitch. Ignition switches locks are combined with security locking of the steering column (in many modern vehicles) or the gear lever (Saab Automobile). In the latter, the switch is between the seats, preventing damage to the driver's knee in the event of a collision. Keyless entry systems, which utilize either a door-mounted keypad or a remote control in place of a car key, are becoming a standard feature on many new cars. Some of them are handsfree. Some keys are high-tech in order to prevent the theft of a car. Mercedes-Benz uses a key that, rather than have a cut metal piece to start the car, uses an encoded infrared beam that communicates with the car's computer. If the codes match, the car can be started. These keys can be expensive to replace, if lost, and can cost up to US$400. Some car manufacturers like Land Rover and Volkswagen use a 'switchblade' key where the key is spring-loaded out of the fob when a button is pressed. This eliminates the need for a separate key fob. This type of key has also been known to be confiscated by airport security officials. Master key. A "'master key'" is intended to open a set of several locks. Usually, there is nothing special about the key itself, but rather the locks into which it will fit. These locks also have keys which are specific to each one (the "'change key'") and cannot open any of the others in the set. Locks which have master keys have a second set of the mechanism used to open them which is identical to all of the others in the set of locks. For example, master keyed pin tumbler locks will have two shear points at each pin position, one for the change key and one for the master key. A far more secure (and more expensive) system has two cylinders in each lock, one for the change key and one for the master key. Larger organizations, with more complex "grandmaster key" systems, may have several masterkey systems where the top level grandmaster key works in all of the locks in the system. A practical attack exists to create a working master key for an entire system given only access to a single master-keyed lock, its associated change key, a supply of appropriate key blanks, and the ability to cut new keys. This is described in Locksmiths may also determine cuts for a replacement master key, when given several different key examples from a given system. Control key. A "'control key'" is a special key used in removable core locking systems. The control key enables a user with very little skill to remove from the cylinder, quickly and easily, a core with a specific combination and replace it with a core with a different combination. In Small Format Interchangeable Cores (SFIC), similar to those developed by Frank Best of the Best Lock Corporation, the key operates a separate shear line, located above the operating key shear line. In Large Format Removable Cores, the key may operate a separate shear line or the key may work like a master key along the operating shear line and also contact a separate locking pin that holds the core in the cylinder. SFIC's are interchangeable from one brand to another, while LFRC's are not. Double-sided key. A "'double-sided key'" is very similar to a house or car key with the exception that it has two sets of teeth, an upper level standard set of teeth and a lower, less defined set of teeth beside it. This makes the double-sided key's profile and its corresponding lock look very similar to a standard key while making the attempt to pick the lock more difficult. As the name implies, this type of key has four sides, making it not only harder to duplicate and the lock harder to pick, but it is also physically more durable. Paracentric key. A "'paracentric key'" is designed to open a paracentric lock. It is distinguishable by the contorted shape of its blade, which protrudes past the centre vertical line of the key barrel. Instead of the wards on the outer face of the lock simply protruding into the shape of the key along the spine, the wards protrude into the shape of the key along the entire width of the key, including along the length of the teeth. Patented by the Yale lock company in 1898, paracentric cylinders are not exceptionally difficult to pick, but require some skill and know-how on the part of the person attempting to pick the lock. Skeleton key=== A "'skeleton key'" (or "'passkey'") is a very simple design of key which usually has a cylindrical shaft (sometimes called a "shank") and a single, minimal flat, rectangular tooth or "bit". Skeleton keys are also usually distinguished by their "bow", or the part one would grasp when inserting the key, which can be either very plain or extremely ornate. A skeleton key is designed to circumvent the wards in warded locks. Warded locks and their keys provide minimal security and only a slight deterrent as any key with a shaft and tooth that has the same or smaller dimensions will open the lock. However, warded keys were designed to only fit a matching lock and the skeleton key would often fit many. Many other objects which can fit into the lock may also be able to open it. Due to its limited usefulness, this type of lock fell out of use after more complicated types became easier to manufacture. In modern usage, the term "skeleton key" is often misapplied to ordinary bit keys and barrel keys, rather than the correct definition: a key, usually with minimal features, which can open all or most of a type of badly designed lock. Bit keys and barrel keys can be newly-minted (and sold by restoration hardware companies) or antiques. They were most popular in the late 1800s, although they continued to be used well into the 20th century and can still be found today in use, albeit in vintage homes and antique furniture. A bit key is distinguished from a barrel key in that a bit key usually has a solid shank, whereas a barrel shafted key can be made either by drilling out the shank from the bit end or by folding metal into a barrel shape when forging the key. Tubular key. A tubular key'" (sometimes referred to as a "barrel key" when describing a vintage or antique model) is one that is designed to open a tubular pin tumbler lock. It has a hollow, cylindrical shaft which is usually much shorter and has a larger diameter than most conventional keys. Antique or vintage-style barrel keys often closely resemble the more traditional "skeleton key" but are a more recent innovation in keymaking. In modern keys of this type, a number of grooves of varying length are built into the outer surface at the end of the shaft. These grooves are parallel to the shaft and allow the pins in the lock to slide to the end of the groove. A small tab on the outer surface of the shaft prevents the pins in the lock from pushing the key out and works with the hollow center to guide the key as it is turned. The modern version of this type of key is harder to duplicate as it is less common and requires a different machine from regular keys. These keys are most often seen in home alarm systems and bicycle locks, in the United States. Zeiss key. A Zeiss key'" (also known as a "'Cruciform key'") is a cross between a house key and a tubular key. It has three sets of teeth at 90 degrees to each other with a flattened fourth side. Though this type of key is easy to duplicate, the extra sets of teeth deter lockpicking attempts. Do Not Duplicate key. A "'Do Not Duplicate key'" (or "'DND key'", for short) is one which has been stamped "do not duplicate" and or "duplication prohibited" or similar by a locksmith or manufacturer as a passive deterrent to prevent a retail key cutting service from duplicating a key without authorization or without contacting the locksmith or manufacturer who originally cut the key. More importantly, this is an access control system for the owner of the key, such as a maintenance person or security guard, to identify keys that should not be freely distributed or used without authorization. Though it is intended to prevent unauthorized key duplication, copying restricted keys remains a common security problem. There is no direct legal implication in the US for someone who copies a key that is stamped "do not duplicate" (unless it is a government owned key), but there are patent restrictions on some key designs (see "restricted keys"). The Associated Locksmiths of America calls DND keys "not effective security", and "deceptive because it provides a false sense of security." United States Code deals with United States Post Office keys, and deals with United States Department of Defense keys. Restricted key. A restricted keyblank'" is a keyway and blank for which a manufacturer has set up a restricted level of sales and distribution. Restricted keys are often protected by patent, which prohibits other manufacturers from making unauthorized productions of the key blank. In many jurisdictions, customers must provide proof of ID before a locksmith will duplicate a key using a restricted blank. These days, many restricted keys have special in-laid features, such as magnets, different types of metal, or even small computer chips to prevent duplication. Keycard. A "'keycard'", while not actually considered a key, is a plastic card which stores a digital signature that is used with electronic access control locks. It is normally a flat, rectangular piece of plastic and may also serve as an ID card. There are several popular type of keycards in use and include the mechanical holecard, bar code, magnetic stripe, smart card (embedded with a read write electronic microchip), and RFID proximity cards. The keycard is used by presenting it to a card reader; swiping or inserting of mag stripe cards, or in the case of RFID cards, merely being brought into close proximity to a sensor. Bar code technology is not a secure form of a key, as the bar code can be copied in a photocopier and often read by the optical reader. Magnetic stripe keycards are becoming increasingly easy to copy, but have the security advantage that one may change the stored key in a magnetic swipe card in case the current key may be compromised. This immediate change of the "key" information can be applied to other media, but this media probably offers the least expensive option, and the most convenient to users and managers of systems that use this media. Example: If you own a car with this system, you can change your keys anytime you want. You can buy new media anywhere a gift card is sold. At least at this point in time, you could buy a gift card for a penny, then use that as the media for the keys to your car. If the system uses digital environmental data samples to create the "key" string, every car can have a set of keys that no one else has. If a card is stolen, or copied without authorization, the card can be remade, and the car security system can be synchronized with the new card, and no longer activationally responsive to the copy of the old card. This approach can empower the system controller (owner individual or centralized administration of a business). Computerized authentication systems, such as key cards, raise privacy concerns, since they enable computer surveillance of each entry. Currently RFID cards and key fobs are becoming more and more popular due to its ease of use. Many modern households have installed digital locks that make use of key cards, in combination with biometric fingerprint and keypad PIN options. The first keycard was the mechanical holecard type patented by Tor Sørnes, a concept he later developed into the magnetic stripe card key. History of locks and keys. Wooden locks and keys were in use as early as 4,000 years ago in Egypt. It is also said that key was invented by Theodore of Samos in the 6th century BC. In the United States, keys have been seen as a symbol of power since colonial times. When William Penn arrived in Delaware 1682, a very elaborate ceremony was carried out where he was given the key to the defense works. Flat metal keys proliferated in the early 20th century, following the introduction of mechanical key duplicators, which allow easy duplication of such keys. Key duplication. "'Key cutting (after cutting, the metalworking term for "shaping by removing material") is the primary method of key duplication: a flat key is fitted into a vise grip in a machine, with a blank attached to a parallel vise grip, and the original key is moved along a guide, while the blank is moved against a wheel, which cuts it. After cutting, the new key is deburred: scrubbed with a metal brush to remove burrs, small pieces of metal remaining A train'" is a connected series of vehicles that move along a track (permanent way) to transport freight or passengers from one place to another. The track usually consists of two rails, but might also be a monorail or maglev guideway. Propulsion for the train is provided by a separate locomotive, or from individual motors in self-propelled multiple units. Most modern trains are powered by diesel locomotives or by electricity supplied by overhead wires or additional rails, although historically (from the early 19th century to the mid-20th century) the steam locomotive was the dominant form of locomotive power. Other sources of power (such as horses, rope or wire, gravity, pneumatics, and gas turbines) are possible. The word 'train' comes from the Old French "trahiner", itself from the Latin "trahere" 'pull, draw'. Types of trains. An electric locomotive -hauled freight train There are various types of train designed for particular purposes. A train can consist of a combination of one or more locomotives and attached railroad cars, or a self-propelled multiple unit (or occasionally a single powered coach, called a railcar). Trains can also be hauled by horses, pulled by a cable, or run downhill by gravity. Special kinds of trains running on corresponding special 'railways' are atmospheric railways, monorails, high-speed railways, maglev, rubber-tired underground, funicular and cog railways. A passenger train may consist of one or several locomotives, and one or more coaches. Alternatively, a train may consist entirely of passenger carrying coaches, some or all of which are powered as a "multiple unit". In many parts of the world, particularly Japan and Europe, high-speed rail is utilized extensively for passenger travel. Freight trains comprise wagons or trucks rather than carriages, though some parcel and mail trains (especially Travelling Post Offices) are outwardly more like passenger trains. Trains can also be 'mixed', comprising both passenger accommodation and freight vehicles. Such mixed trains are most likely to occur where services are infrequent, and running separate passenger and freight trains is not cost-effective, though the differing needs of passengers and freight usually means this is avoided where possible. Special trains are also used for track maintenance; in some places, this is called maintenance of way. In the United Kingdom, a train hauled by two locomotives is said to be "double-headed", and in Canada and the United States it is quite common for a long freight train to be headed by three or more locomotives. A train with a locomotive attached at each end is described as 'top and tailed', this practice typically being used when there are no reversing facilities available. Where a second locomotive is attached temporarily to assist a train up steep banks or grades (or down them by providing braking power) it is referred to as 'banking' in the UK, or 'helper service' in North America. Recently, many loaded trains in the US have been made up with one or more locomotives in the middle or at the rear of the train, operated remotely from the lead cab. This is referred to as "DP" or "Distributed Power." Official terminology. The railway terminology that is used to describe a 'train' varies between countries. In the United Kingdom, the interchangeable terms set'" and "'unit'" are used to refer to a group of permanently or semi-permanently coupled vehicles, such as those of a multiple unit. While when referring to a train made up of a variety of vehicles, or of several sets units, the term "'formation'" is used. (Although the UK public and media often forgo 'formation', for simply 'train'.) The word "'rake'" is also used for a group of coaches or wagons. In the United Kingdom Section 83(1) of the Railways Act 1993 defines "train" as follows: In the United States, the term "'consist'" is used to describe the group of rail vehicles which make up a train. When referring to motive power, "'consist'" refers to the group of locomotives powering the train. Similarly, the term "'trainset'" refers to a group of rolling stock that is permanently or semi-permanently coupled together to form a unified set of equipment (the term is most often applied to passenger train configurations). The Atchison, Topeka and Santa Fe Railway's 1948 operating rules define a train as: "An engine or more than one engine coupled, with or without cars, displaying markers." Motive power. The first trains were rope-hauled, gravity powered or pulled by horses, but from the early 19th century almost all were powered by steam locomotives. From the 1920s onwards they began to be replaced by less labour intensive and cleaner (but more complex and expensive) diesel locomotives and electric locomotives, while at about the same time self-propelled multiple unit vehicles of either power system became much more common in passenger service. In most countries dieselisation of locomotives in day-to-day use was completed by the 1970s. A few countries, most notably the People's Republic of China, where coal and labour are cheap, still use steam locomotives, but this is being gradually phased out. Historic steam trains still run in many other countries, for the leisure and enthusiast market. Electric traction offers a lower cost per mile of train operation but at a higher initial cost, which can only be justified on high traffic lines. Since the cost per mile of construction is much higher, electric traction is less favored on long-distance lines with the exception of long-distance high speed lines. Electric trains receive their current via overhead lines or through a third rail electric system. Passenger trains. A passenger train is one which includes passenger-carrying vehicles. It may be a self-powered multiple unit or railcar, or else a combination of one or more locomotives and one or more unpowered trailers known as coaches, cars or carriages. Passenger trains travel between stations where passengers may join or leave the train. The oversight of the train is the duty of a staff called the conductor. Many of the more prestigious passenger train services have been given a specific name, some of which have become famous in literature and fiction. India has the largest passenger density in the world. Some passenger trains, both long distance and short distanced, may use Bilevel car (double-decker) to hold more passengers per car. Designs and safety of passenger trains has changed dramatically over time. Long-distance trains. Long-distance trains travel between many cities and or regions of a country, and sometimes cross several countries. They often have a dining car or restaurant car to allow passengers to have a meal during the course of their journey. Trains traveling overnight may also have sleeping cars. High-speed trains. Russian Velaro high speed passenger train (a form of multiple unit) One notable and growing long-distance train category in the world is High-speed train. Generally they are faster than 200 km h and often use new separate passenger-only line of high grade standard. Shinkansen in Japan opened in 1964 is the first successful example of newly constructed High-speed train. The fastest train on rails is the French TGV (Train à Grande Vitesse) (French for High Speed Train) which achieved a speed of 574.8 km h (356 mph) in testing in 2007. The fastest commercial speed on rail is currently 350km h of Beijing–Tianjin Intercity Rail in China. TGV runs at a maximum commercial speed of 300-320 km h, as does the German ICE. Generally, High-speed rail is very competitive in less than 3 or 4 hours distance (ex; Tokyo Osaka in Japan, 500km, 2h 30min, Paris- Lyon in France, 500 km, 2h) in corridor of dense population, but often air has advantage in longer journey. Very fast trains sometimes tilt, like the APT, the Pendolino, or the Talgo. Tilting is a system where the passenger cars automatically lean into curves, reducing the sideways g-forces on passengers and permitting higher speeds on curves in the track with greater passenger comfort. Maglev. In order to achieve much faster operation over 500 km h, innovative Maglev technology has been researched for years. Shanghai Maglev Train, opened in 2003, is the fastest one of 430km h operation. But Maglev has never operated to serve mass inter-city transit so far. Inter-city trains. Trains connecting cities can be distinguished into two groups, inter-city trains, which do not halt at small stations, and trains that serve all stations, usually known as local trains or "stoppers" (and sometimes an intermediate type, usually known as limited-stop). Regional trains. Regional trains usually connect between towns and cities, rather than purely linking major population hubs like inter-city train, and serve local traffic demand in relatively rural area. Commuter trains. For shorter distances many cities have networks of commuter trains, serving the city and its suburbs. Train is very efficient mode of transportation to cope with large traffic demand in metropolis. Compared with road transport, it carries many people with much smaller land area and little air pollution. Some carriages may be laid out to have more standing room than seats, or to facilitate the carrying of prams, cycles or wheelchairs. Some countries have double-decked passenger trains for use in conurbations. Double deck high speed and sleeper trains are becoming more common in mainland Europe. Sometimes extreme congestion of commuter trains becomes a problem. For example, an estimated 3.5 million passengers ride every day on Yamanote Line in Tokyo, Japan, with its 29 stations. For comparison, the New York City Subway carries 4.8 million passengers per day on 26 lines serving 468 stations. To cope with large traffic, special cars in which the bench seats fold up to provide standing room only during the morning rush hour (until 10 a.m.) are operated in Tokyo (E231 series train). This train has as many as six sets of doors on each side to shorten the time for passengers to get on and off at station. Passenger trains usually have emergency brake handles (or a "communication cord") that the public can operate. Misuse is punished by a heavy fine. Rapid transit. Large cities often have a metro system, also called underground, subway or tube. The trains are electrically powered, usually by third rail, and their railroads are separate from other traffic, without level crossings. Usually they run in tunnels in the city center and sometimes on elevated structures in the outer parts of the city. They can accelerate and decelerate faster than heavier, long-distance trains. The term "'rapid transit'" is used for public transport such as commuter trains, metro and light rail. However, in New York City, lines on the New York City Subway have been referred to as "trains". Tram. A light one- or two-car rail vehicle running through the streets is by convention not considered a train but rather a tram, trolley, light-rail vehicle or streetcar, but the distinction is not always strict. In some countries such as the United Kingdom the distinction between a tramway and a railway is precise and defined in law. Light rail. The term light rail is sometimes used for a modern tram, but it may also mean an intermediate form between a tram and a train, similar to metro except that it may have level crossings. These are often protected with crossing gates. They may also be called a trolley. Monorail. Monorail is developed to meet medium-demand traffic in urban transit, buts represent minor technologies in the train field. Named trains. Railway companies often give a name to a train service as a marketing exercise, to raise the profile of the service and hence attract more passengers (and also to gain kudos for the company). Usually, naming is reserved for the most prestigious trains: the high-speed express trains between major cities, stopping at few intermediate stations. The names of services such as the Orient Express, the Flying Scotsman, the Flèche d’Or and the Royal Scot have passed into popular culture. A somewhat less common practice is the naming of freight trains, for the same commercial reasons. The "Condor" was an overnight London-Glasgow express goods train, in the 1960s, hauled by pairs of "Metrovick" diesel locomotives. In the mid-1960s, British Rail introduced the "Freightliner" brand, for the new train services carrying containers between dedicated terminals around the rail network. The Rev. W. Awdry also named freight trains, coining the term "The Flying Kipper" for the overnight express fish train that appeared in his stories in The Railway Series books. Other trains of specific kinds. Heritage trains are operated by volunteers, often railfans, as a tourist attraction. Usually trains are a kind of historic value and retired practical operation. Most of them run weekend and vacation seasons. Airport trains are trains within airport buildings that transport people between terminals. Mine trains are operated in large mine and carry both workers and goods. Freight trains. A freight train (also known as goods train) uses "'freight cars (also known as wagons or trucks) to transport goods or materials (cargo) essentially any train that is not used for carrying passengers. Much of the world's freight is transported by train, and in the USA the rail system is used more for transporting freight than passengers. Under the right circumstances, transporting freight by train is highly economic, and also more energy efficient than transporting freight by road. Rail freight is most economic when freight is being carried in bulk and over long distances, but is less suited to short distances and small loads. Bulk aggregate movements of a mere twenty miles (32 km) can be cost effective even allowing for trans-shipment costs. These trans-shipment costs dominate in many cases and many modern practices such as container freight are aimed at minimizing these. The main disadvantage of rail freight is its lack of flexibility. For this reason, rail has lost much of the freight business to road competition. Many governments are now trying to encourage more freight onto trains, because of the benefits that it would bring. There are many different types of freight trains, which are used to carry many different kinds of freight, with many different types of wagons. One of the most common types on modern railways are container trains, where containers can be lifted on and off the train by cranes and loaded off or onto trucks or ships. This type of freight train has largely superseded the traditional boxcar (wagon-load) type of freight train, with which the cargo has to be loaded or unloaded manually. In some countries "piggy-back" trains are used: trucks can drive straight onto the train and drive off again when the end destination is reached. A system like this is used through the Channel Tunnel between England and France, and for the trans-Alpine service between France and Italy (this service uses Modalohr road trailer carriers). 'Piggy-back' trains are the fastest growing type of freight trains in the United States, where they are also known as 'trailer on flatcar' or TOFC trains. 'Piggy-back' trains require no special modifications to the vehicles being carried. An alternative type of "inter-modal" vehicle, known as a Roadrailer, is designed to be physically attached to the train. The original trailers were fitted with two sets of wheels: one set flanged, for the trailer to run connected to other such trailers as a rail vehicle in a train; and one set tyred, for use as the semi-trailer of a road vehicle. More modern trailers have only road wheels and are designed to be carried on specially adapted bogies (trucks) when moving on rails. There are also many other types of wagons, such as "low loader" wagons for transporting road vehicles. There are refrigerator cars for transporting foods such as ice cream. There are simple types of open-topped wagons for transporting minerals and bulk material such as coal, and tankers for transporting liquids and gases. Today however most coal and aggregates are moved in hopper wagons that can be filled and discharged rapidly, to enable efficient handling of the materials. Freight trains are sometimes illegally boarded by passengers who do not wish to pay money, or do not have the money to travel by ordinary means. This is referred to as "hopping" and is considered by some communities to be a viable form of transport. Most hoppers sneak into train yards and stow away in boxcars. More bold hoppers will catch a train "on the fly", that is, as it is moving, leading to occasional fatalities.