ratio of word probabilities predicted from brain for house and chimney

close this window

house

chimney

top 10 words in brain distribution (in article):
build city house design material state town Unite home provide
top 10 words in brain distribution (in article):
build wood structure design wall form type floor construction city
top 10 words in brain distribution (not in article):
station power store street line church train signal radio locomotive
top 10 words in brain distribution (not in article):
material paint size surface window cell tree frame plastic time
times more probable under house 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chimney
(words not in the model)
A house'" generally refers to a or building that is a dwelling or place for habitation by humans. The term includes many kinds of dwellings ranging from rudimentary huts of nomadic tribes to high-rise apartment buildings. However, the word can also be used as a verb ("to house"), and can have adjectival formations as well. In some contexts, "house" may mean the same as dwelling, residence, home, abode, accommodation, housing, lodging, among other meanings. The social unit that lives in a house is known as a household. Most commonly, a household is a family unit of some kind, though households can be other social groups, such as single persons, or groups of unrelated individuals. Settled agrarian and industrial societies are composed of household units living permanently in housing of various types, according to a variety of forms of land tenure. English-speaking people generally call any building they routinely occupy "home". Many people leave their houses during the day for work and recreation but typically return to them to sleep or for other activities. History. The oldest house in the world is approximately from 10,000 BC and was made of mammoth bones, found at Mezhirich near Kiev in Ukraine. It was probably covered with mammoth hides. The house was discovered in 1965 by a farmer digging a new basement six feet below the ground. Architect Norbert Schoenauer, in his book "6,000 Years of Housing", identifies three major categories of types of housing: the "Pre-Urban" house, the "Oriental Urban" house, and the "Acidental Urban" house. Types of Pre-Urban houses include temporary dwellings such as the Inuit igloo, semi-permanent dwellings such as the pueblo, and permanent dwellings such as the New England homestead. "Oriental Urban" houses include houses of the ancient Greeks and Romans, and traditional urban houses in China, India, and Islamic cities. "Occidental Urban" houses include medieval urban houses, the Renaissance town house, and the houses, tenements and apartments of the 19th and 20th centuries. Houses of that time were generally made of simple and raw materials. Structure. The developed world in general features three basic types of house that have their own ground-level entry and private open space, and usually on a separately titled parcel of land: In addition, there are various forms of attached housing where a number of dwelling units are co-located within the same structure, which share a ground-level entry and may or may not have any private open space, such as apartments (a.k.a. flats) of various scales. Another type of housing is movable, such as houseboats, caravans, and trailer homes. In the United Kingdom, 27% of the population live in terraced houses and 32% in semi-detached houses, as of 2002. In the United States as of 2000, 61.4% of people live in detached houses and 5.6% in semi-detached houses, 26% in row houses or apartments, and 7% in mobile homes. Shape. Archaeologists have a particular interest in house shape: they see the transition over time from round huts to rectangular houses as a significant advance in optimizing the use of space, and associate it with the growth of the idea of a personal area (see personal space). Function. Some houses transcend the basic functionality of providing "a roof over one's head" or of serving as a family "hearth and home". When a house becomes a display-case for wealth and or fashion and or conspicuous consumption, we may speak of a "great house". The residence of a feudal lord or of a ruler may require defensive structures and thus turn into a fort or a castle. The house of a monarch may come to house courtiers and officers as well as the royal family: this sort of house may become a palace. Moreover, in time the lord or monarch may wish to retreat to a more personal or simple space such as a villa, a hunting lodge or a dacha. Compare the popularity of the holiday house or cottage, also known as a crib. In contrast to a relatively upper class or modern trend to ownership of multiple houses, much of human history shows the importance of multi-purpose houses. Thus the house long served as the traditional place of work (the original cottage industry site or "in-house" small-scale manufacturing workshop) or of commerce (featuring, for example, a ground floor "shop-front" shop or counter or office, with living space above). During the Industrial Revolution there was a separation of manufacturing and banking from the house, though to this day some shopkeepers continue (or have returned) to live "over the shop". Layout. Ideally, architects of houses design rooms to meet the needs of the people who will live in the house. Such designing, known as "interior design", has become a popular subject in universities. Feng shui, originally a Chinese method of situating houses according to such factors as sunlight and micro-climates, has recently expanded its scope to address the design of interior spaces with a view to promoting harmonious effects on the people living inside the house. Feng shui can also mean the 'aura' in or around a dwelling. Compare the real-estate sales concept of "indoor-outdoor flow". The square footage of a house in the United States reports the area of "living space", excluding the garage and other non-living spaces. The "square meters" figure of a house in Europe reports the area of the walls enclosing the home, and thus includes any attached garage and non-living spaces. Parts. Many houses have several rooms with specialized functions. These may include a living eating area, a sleeping area, and (if suitable facilities and services exist) washing and lavatory areas. In traditional agriculture-oriented societies, domestic animals such as chickens or larger livestock (like cattle) often share part of the house with human beings. Most conventional modern houses will at least contain a bedroom, bathroom, kitchen (or kitchen area), and a living room. A typical "foursquare house" (as pictured) occurred commonly in the early history of the United States of America, with a staircase in the center of the house, surrounded by four rooms, and connected to other sections of the house (including in more recent eras a garage). The names of parts of a house often echo the names of parts of other buildings, but could typically include: Construction. In the United States, modern house-construction techniques include light-frame construction (in areas with access to supplies of wood) and adobe or sometimes rammed-earth construction (in arid regions with scarce wood-resources). Some areas use brick almost exclusively, and quarried stone has long provided walling. To some extent, aluminum and steel have displaced some traditional building materials. Increasingly popular alternative construction materials include insulating concrete forms (foam forms filled with concrete), structural insulated panels (foam panels faced with oriented strand board or fiber cement), and light-gauge steel framing and heavy-gauge steel framing. More generally, people often build houses out of the nearest available material, and often tradition and or culture govern construction-materials, so whole towns, areas, counties or even states countries may be built out of one main type of material. For example, a large fraction of American houses use wood, while most British and many European houses utilize stone or brick. In the 1900s, some house designers started using prefabrication. Sears, Roebuck & Co. first marketed their Houses by Mail to the general public in 1908. Prefab techniques became popular after World War II. First small inside rooms framing, then later, whole walls were prefabricated and carried to the construction site. The original impetus was to use the labor force inside a shelter during inclement weather. More recently builders have begun to collaborate with structural engineers who use computers and finite element analysis to design prefabricated steel-framed homes with known resistance to high wind-loads and seismic forces. These newer products provide labor savings, more consistent quality, and possibly accelerated construction processes. Lesser-used construction methods have gained (or regained) popularity in recent years. Though not in wide use, these methods frequently appeal to homeowners who may become actively involved in the construction process. They include: Energy-efficiency. In the developed world, energy-conservation has grown in importance in house-design. Housing produces a major proportion of carbon emissions (30% of the total in the UK, for example). Development of a number of types and techniques continues. They include the zero-energy house, the passive solar house, superinsulated and houses built to the "Passivhaus" standard. Earthquake protection. One tool of earthquake engineering is base isolation which is increasingly used for earthquake protection. Base isolation is a collection of structural elements of a building that should substantially decouple it from the shaking ground thus protecting the building's integrity and enhancing its seismic performance. This technology, which is a kind of seismic vibration control, can be applied both to a newly designed building and to seismic upgrading of existing structures. Normally, excavations are made around the building and the building is separated from the foundations. Steel or reinforced concrete beams replace the connections to the foundations, while under these, the isolating pads, or "base isolators", replace the material removed. While the "base isolation" tends to restrict transmission of the ground motion to the building, it also keeps the building positioned properly over the foundation. Careful attention to detail is required where the building interfaces with the ground, especially at entrances, stairways and ramps, to ensure sufficient relative motion of those structural elements. Legal issues. Buildings with historical importance have restrictions. United Kingdom. New houses in the UK are not covered by the Sale of Goods Act. When purchasing a new house the buyer has less legal protection than when buying a new car. New houses in the UK may be covered by a NHBC guarantee but some people feel that it would be more useful to put new houses on the same legal footing as other A chimney'" is a structure for venting hot flue gases or smoke from a boiler, stove, furnace or fireplace to the outside atmosphere. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney, effect. The space inside a chimney is called a "flue". Chimneys may be found in buildings, steam locomotives and ships. In the US, the term smokestack'" (colloquially, "'stack'") is also used when referring to locomotive chimneys. The term "'funnel'" is generally used for ships' chimneys and sometimes to refer to locomotive chimneys.. Chimneys are tall to increase their draw of air for combustion and to disperse pollutants in the flue gases over a greater area so as to reduce the pollutant concentrations in compliance with regulatory or other limits. History. Romans used tubes inside the walls to draw smoke out of bakeries but real chimneys appeared only in northern Europe in the 12th century. Industrial chimneys became common in the late 18th century. The earliest extant example of an English chimney is at Conisborough Keep in Yorkshire, which dates from 1185 AD. Chimneys have traditionally been built of brick, both in small and large buildings. Early chimneys were of a simple brick construction. Later chimneys were constructed by placing the bricks around tile liners. To control downdrafts venting caps (often called "chimney pots") with a variety of designs are sometimes placed on the top of chimneys. In the eighteenth and nineteenth centuries, the methods used to extract lead from its ore produced large amounts of toxic fumes. In the north of England, long near-horizontal chimneys were built, often more than 3 km (2 mi) long, which typically terminated in a short vertical chimney in a remote location where the fumes would cause less harm. Lead and silver deposits formed on the inside of these long chimneys, and periodically workers would be sent along the chimneys to scrape off these valuable deposits. Construction. Due to brick's limited ability to handle transverse loads, chimneys in houses were often built in a "stack", with a fireplace on each floor of the house sharing a single chimney, often with such a stack at the front and back of the house. Today's central heating systems have made chimney placement less critical, and the use of non-structural gas vent pipe allows a flue gas conduit to be installed around obstructions and through walls. In fact, many modern high-efficiency heating appliances do not require a chimney. Such appliances are typically installed near an outside wall, and a noncombustible wall thimble allows vent pipe to be run directly through the outside wall. Industrial chimneys are commonly referred to as flue gas stacks and are typically external structures, as opposed to being built into the wall of a building. They are generally located adjacent to a steam-generating boiler or industrial furnace and the gases are carried to it with ductwork. Today the use of reinforced concrete has almost entirely replaced brick as a structural component in the construction of industrial chimneys. Refractory bricks are often used as a lining, particularly if the type of fuel being burned generates flue gases containing acids. Modern industrial chimneys sometimes consist of a concrete windshield with a number of flues on the inside. The 300 metre chimney at Sasol Three consists of a 26 metre diameter windshield with four 4.6 metre diameter concrete flues which are lined with refractory bricks built on rings of corbels spaced at 10 metre intervals. The reinforced concrete can be cast by conventional formwork or sliding formwork. The height is to ensure the pollutants are dispersed over a wider area to meet legislative or safety requirements. Chimney tops. A chimney pot is placed on top of the chimney to inexpensively extend the length of the chimney, and to improve the chimney's draft. A chimney with more than one pot on it indicates that there is more than one fireplace on different floors sharing the chimney. A chimney cowl is placed on top of the chimney to prevent birds and squirrels from nesting in the chimney. They often feature a rain guard to keep rain from going down the chimney. A metal wire mesh is often used as a spark arrestor to minimize burning debris from rising out of the chimney and making it onto the roof. Although the masonry inside the chimney can absorb a large amount of moisture which later evaporates, rainwater can collect at the base of the chimney. Sometimes weep holes are placed at the bottom of the chimney to drain out collected water. A chimney cowl or wind directional cap is helmet shaped chimney cap that rotates to align with the wind and prevent a backdraft of smoke and wind back down the chimney. An H-style cap'" (cowl) is a chimney top constructed from chimney pipes shaped like the letter H. It is an age old method to regulate draft in situations where prevailing winds or turbulences cause down draft and backpuffing. Although the "'H cap'" has a distinctive advantage over most other downdraft caps, it fell out of favor because of it bulky looks. It is found mainly in marine use but has been gaining popularity again due to its energy saving functionality. The "'H-cap stabilizes the draft rather than increasing it. Other down draft caps are based on the Venturi effect, solving downdraft problems by increasing the up draft constantly resulting in much higher fuel consumption. A chimney damper is a metal spring door placed at the top of the chimney with a long metal chain that allows you to open and close the chimney from the fireplace. In the late Middle Ages in Western Europe the design of crow-stepped gables arose to allow maintenance access to the chimney top, especially for tall structures such as castles and great manor houses. Chimney draught or draft. When coal, oil, natural gas, wood or any other fuel is combusted in a stove, oven, fireplace, hot water boiler or industrial furnace, the hot combustion product gases that are formed are called flue gases. Those gases are generally exhausted to the ambient outside air through chimneys or industrial flue gas stacks (sometimes referred to as smokestacks). The combustion flue gases inside the chimneys or stacks are much hotter than the ambient outside air and therefore less dense than the ambient air. That causes the bottom of the vertical column of hot flue gas to have a lower pressure than the pressure at the bottom of a corresponding column of outside air. That higher pressure outside the chimney is the driving force that moves the required combustion air into the combustion zone and also moves the flue gas up and out of the chimney. That movement or flow of combustion air and flue gas is called "natural draught draft", "natural ventilation", "chimney effect", or "stack effect". The taller the stack, the more draught or draft is created. Designing chimneys and stacks to provide the correct amount of natural draught or draft involves a number design factors, many of which require trial-and-error reiterative methods. As a "first guess" approximation, the following equation can be used to estimate the natural draught draft flow rate by assuming that the molecular mass (i.e., molecular weight) of the flue gas and the external air are equal and that the frictional pressure and heat losses are negligible: Drawbacks. A characteristic problem of chimneys is they develop deposits of creosote on the walls of the structure when used with wood as a fuel. Some types of wood, such as pine, generate more creosote than others. Deposits of this substance can interfere with the airflow and more importantly, they are flammable and can cause dangerous chimney fires if the deposits ignite in the chimney. Thus, it is recommended and in some countries even mandatory that chimneys be inspected annually and cleaned on a regular basis to prevent these problems. The workers who perform this task professionally are called chimney sweeps. In the middle ages in some parts of Europe, a crow-stepped gable design was developed, partially to provide access to chimneys without use of ladders. Masonry (brick) chimneys have also proved particularly susceptible to crumbling during earthquakes. Government housing authorities in quake-prone cities like San Francisco and Los Angeles now recommend building new homes with stud-framed chimneys around a metal flue. Bracing or strapping old masonry chimneys has not proved to be very effective in preventing damage or injury from earthquakes. Perhaps predictably, a new industry provides "faux-brick" facades to cover these modern chimney structures. Other problems include "spalling" brick, in which moisture seeps into the brick and then freezes, cracking and flaking the brick and loosening mortar seals. Dual-use chimneys. Some very high chimneys are used for carrying antennas of mobile phone services and low power FM TV-transmitters. Special attention must be paid to possible corrosion problems if these antennas are near the exhaust of the chimney. In some cases the chimneys of power stations are used also as pylons. However this type of construction is not very common, because of corrosion problems of conductor cables. The Dům Dětí a Mládeže v Modřanech in Prague, Czech Republic is equipped with an observation deck. Cooling tower used as an industrial chimney. At some power stations, which are equipped with plants for the removal of sulfur dioxide and nitrogen oxides, it is possible to use the cooling tower as a chimney. Such cooling towers can be seen in Germany at the Power Station Staudinger Grosskrotzenburg and at the Power Station Rostock. At power stations that are not equipped for removing sulfur dioxide, such usage of cooling towers could result in serious corrosion problems.