ratio of word probabilities predicted from brain for horse and telephone

close this window

horse

telephone

top 10 words in brain distribution (in article):
species animal water horse wear male breed female form time
top 10 words in brain distribution (in article):
light produce power time common design bulb state allow require
top 10 words in brain distribution (not in article):
bird cat egg fish occur city woman kill lion clothe
top 10 words in brain distribution (not in article):
animal drink lamp water wine beer bottle species cat wolf
times more probable under horse 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under telephone
(words not in the model)
The horse'" ("Equus ferus caballus") is a hoofed (ungulate) mammal, a subspecies of one of seven extant species of the family Equidae. The horse has evolved over the past 45 to 55 million years from a small multi-toed creature into the large, single-toed animal of today. Humans began to domesticate horses around 4000 BC, and their domestication is believed to have been widespread by 3000 BC; by 2000 BC the use of domesticated horses had spread throughout the Eurasian continent. Although most horses today are domesticated, there are still endangered populations of the Przewalski's Horse, the only remaining true wild horse, as well as more common feral horses which live in the wild but are descended from domesticated ancestors. There is an extensive, specialized vocabulary used to describe equine-related concepts, covering everything from anatomy to life stages, size, colors, markings, breeds, locomotion, and behavior. Horses are anatomically designed to use speed to escape predators, and have a well-developed sense of balance and a strong fight-or-flight instinct. Related to this need to flee from predators in the wild is an unusual trait: horses are able to sleep both standing up and lying down. Female horses, called mares, carry their young for approximately 11 months, and a young horse, called a foal, can stand and run shortly following birth. Most domesticated horses begin training under saddle or in harness between the ages of two and four. They reach full adult development by age five, and have an average lifespan of between 25 and 30 years. Horse breeds are loosely divided into three categories based on general temperament: spirited "hot bloods" with speed and endurance; "cold bloods," such as draft horses and some ponies, suitable for slow, heavy work; and "warmbloods," developed from crosses between hot bloods and cold bloods, often focusing on creating breeds for specific riding purposes, particularly in Europe. There are over 300 breeds of horses in the world today, developed for many different uses. Horses and humans interact in many ways, not only in a wide variety of sport competitions and non-competitive recreational pursuits, but also in working activities including police work, agriculture, entertainment, assisted learning and therapy. Horses were historically used in warfare. A wide variety of riding and driving techniques have been developed, using many different styles of equipment and methods of control. Many products are derived from horses, including meat, milk, hide, hair, bone, and pharmaceuticals extracted from the urine of pregnant mares. Humans provide domesticated horses with food, water and shelter, as well as attention from specialists such as veterinarians and farriers. Biology. Horse anatomy is described by a large number of specific terms, as illustrated by the chart to the right. Specific terms also describe various ages, colors and breeds. Age. Depending on breed, management and environment, the domestic horse today has a life expectancy of 25 to 30 years. It is uncommon, but a few animals live into their 40s and, occasionally, beyond. The oldest verifiable record was "Old Billy," a 19th-century horse that lived to the age of 62. In modern times, Sugar Puff, who had been listed in the Guinness Book of World Records as the world's oldest living pony, died in 2007, aged 56. Regardless of a horse's actual birth date, for most competition purposes an animal is considered a year older on January 1 of each year in the northern hemisphere and August 1 in the southern hemisphere. The exception is in endurance riding, where the minimum age to compete is based on the animal's calendar age. A very rough estimate of a horse's age can be made from looking at its teeth. The following terminology is used to describe horses of various ages: In horse racing, the definitions of colt, filly, mare, and stallion may differ from those given above. In the UK, Thoroughbred horse racing defines a colt as a male less than five years old, and a filly as a female less than five years old. In the USA, both Thoroughbred racing and harness racing defines colts and fillies as four years old and younger. Size. The English-speaking world measures the height of horses in hands, abbreviated "h" or "hh," for "hands high," measured at the highest point of an animal's withers, where the neck meets the back, chosen as a stable point of the anatomy, unlike the head or neck, which move up and down; one hand is. Intermediate heights are defined by hands and inches, rounding to the lower measurement in hands, followed by a decimal point and the number of additional inches between 1 and 3. Thus a horse described as "15.2 h," is 15 hands, 2 inches in height. The size of horses varies by breed, but can also be influenced by nutrition. The general rule for cutoff in height between what is considered a horse and a pony at maturity is 14.2 hands. An animal 14.2 h or over is usually considered to be a horse and one less than 14.2 h a pony. However, there are exceptions to the general rule. Some breeds which typically produce individuals both under and over 14.2 h are considered horses regardless of their height. Conversely, some pony breeds may have features in common with horses, and individual animals may occasionally mature at over 14.2 h, but are still considered to be ponies. The distinction between a horse and pony is not simply a difference in height, but takes account of other aspects of "phenotype" or appearance, such as conformation and temperament. Ponies often exhibit thicker manes, tails and overall coat. They also have proportionally shorter legs, wider barrels, heavier bone, shorter and thicker necks, and short heads with broad foreheads. They often have calmer temperaments than horses and also a high level of equine intelligence that may or may not be used to cooperate with human handlers. In fact, small size, by itself, is sometimes not a factor at all. While the Shetland pony stands on average 10 hands high, the Falabella and other miniature horses, which can be no taller than, the size of a medium-sized dog, are classified by their respective registries as very small horses rather than as ponies. Light riding horses such as Arabians, Morgans, or Quarter Horses usually range in height from 14 to 16 hands and can weigh from. Larger riding horses such as Thoroughbreds, American Saddlebreds or Warmbloods usually start at about 15.2 hands and often are as tall as 17 hands, weighing from. Heavy or draft horses such as the Clydesdale, Belgian, Percheron, and Shire are usually at least 16 to 18 hands high and can weigh from about. The largest horse in recorded history was probably a Shire horse named Sampson, who lived during the late 1800s. He stood 21.2½ hands high, and his peak weight was estimated at. The current record holder for the world's smallest horse is Thumbelina, a fully mature miniature horse affected by dwarfism. She is tall and weighs. Colors and markings. Horses exhibit a diverse array of coat colors and distinctive markings, described with a specialized vocabulary. Often, a horse is classified first by its coat color, before breed or sex. Flashy or unusual colors are sometimes very popular, as are horses with particularly attractive markings. Horses of the same color may be distinguished from one another by their markings. The genetics that create many horse coat colors have been identified, although research continues on specific genes and mutations that result in specific color traits. Essentially, all horse colors begin with a genetic base of "red" (chestnut) or "black," with the addition of alleles for spotting, graying, suppression or dilution of color, or other effects acting upon the base colors to create the dozens of possible coat colors found in horses. Horses which are light in color are often misnamed as being "white" horses. A horse that looks pure white is, in most cases, actually a middle-aged or older gray. Grays have black skin underneath their white hair coat (with the exception of small amounts of pink skin under white markings). The only horses properly called white are those with pink skin under a white hair coat, a fairly rare occurrence. There are no truly albino horses, with pink skin and red eyes, as albinism is a lethal condition in horses. Reproduction and development. Pregnancy lasts for approximately 335–340 days and usually results in one foal. Twins are very rare. Colts are carried on average about 4 days longer than fillies. Horses are a precocial species, and foals are capable of standing and running within a short time following birth. Horses, particularly colts, may sometimes be physically capable of reproduction at about 18 months. In practice, individuals are rarely allowed to breed before the age of three, especially females. Horses four years old are considered mature, although the skeleton normally continues to develop until the age of six; the precise time of completion of development also depends on the horse's size, breed, gender, and the quality of care provided by its owner. Also, if the horse is larger, its bones are larger; therefore, not only do the bones take longer to actually form bone tissue, but the epiphyseal plates are also larger and take longer to convert from cartilage to bone. These plates convert after the other parts of the bones, but are crucial to development. Depending on maturity, breed, and the tasks expected, young horses are usually put under saddle and trained to be ridden between the ages of two and four. Although Thoroughbred race horses are put on the track at as young as two years old in some countries, horses specifically bred for sports such as dressage are generally not entered into top-level competition until they are a minimum of four years old, because their bones and muscles are not solidly developed, nor is their advanced training complete. For endurance riding competition, horses are not deemed mature enough to compete until they are a full 60 calendar months (5 years) old. Skeletal system. Horses have a skeleton that averages 205 bones. A significant difference between the horse skeleton, compared to that of a human, is the lack of a collarbone—the horse's front limb system is attached to the spinal column by a powerful set of muscles, tendons and ligaments that attach the shoulder blade to the torso. The horse's legs and hooves are also unique structures. Their leg bones are proportioned differently from those of a human. For example, the body part that is called a horse's "knee" is actually made up of the carpal bones that correspond to the human wrist. Similarly, the hock, contains the bones equivalent to those in the human ankle and heel. The lower leg bones of a horse correspond to the bones of the human hand or foot, and the fetlock (incorrectly called the "ankle") is actually the proximal sesamoid bones between the cannon bones (a single equivalent to the human metacarpal or metatarsal bones) and the proximal phalanges, located where one finds the "knuckles" of a human. A horse also has no muscles in its legs below the knees and hocks, only skin, hair, bone, tendons, ligaments, cartilage, and the assorted specialized tissues that make up the hoof. Hooves. The critical importance of the feet and legs is summed up by the traditional adage, "no foot, no horse". The horse hoof begins with the distal phalanges, the equivalent of the human fingertip or tip of the toe, surrounded by cartilage and other specialized, blood-rich soft tissues such as the laminae. The exterior hoof wall and horn of the sole is made of essentially the same material as a human fingernail. The end result is that a horse, weighing on average, travels on the same bones as a human on tiptoe. For the protection of the hoof under certain conditions, some horses have horseshoes placed on their feet by a professional farrier. The hoof continually grows, and needs to be trimmed (and horseshoes reset, if used) every five to eight weeks. Teeth. Horses are adapted to grazing. In an adult horse, there are 12 incisors, adapted to biting off the grass or other vegetation, at the front of the mouth. There are 24 teeth adapted for chewing, the premolars and molars, at the back of the mouth. Stallions and geldings have four additional teeth just behind the incisors, a type of canine teeth that are called "tushes." Some horses, both male and female, will also develop one to four very small vestigial teeth in front of the molars, known as "wolf" teeth, which are generally removed because they can interfere with the bit. There is an empty interdental space between the incisors and the molars where the bit rests directly on the bars (gums) of the horse's mouth when the horse is bridled. The incisors show a distinct wear and growth pattern as the horse ages, as well as change in the angle at which the chewing surfaces meet. The teeth continue to erupt throughout life as they are worn down by grazing, so a very rough estimate of a horse's age can be made by an examination of its teeth, although diet and veterinary care can affect the rate of tooth wear. Digestion. Horses are herbivores with a digestive system adapted to a forage diet of grasses and other plant material, consumed steadily throughout the day. Therefore, compared to humans, they have a relatively small stomach but very long intestines to facilitate a steady flow of nutrients. A horse will eat of food per day and, under normal use, drink to of water. Horses are not ruminants, so they have only one stomach, like humans, but unlike humans, they can also digest cellulose from grasses due to the presence of a "hind gut" called the cecum, or "water The telephone'" (from the, "tēle", "far" and φωνή, "phōnē", "voice") is a telecommunications device that is used to transmit and receive electronically or digitally encoded sound (most commonly speech) between two or more people conversing. It is one of the most common household appliances in the developed world today. Most telephones operate through transmission of electric signals over a complex telephone network which allows almost any phone user to communicate with almost any other user. Graphic symbols used to designate telephone service or phone-related information in print, signs, and other media include,, and. Basic principle. A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active state or "off hook" by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator that produces DTMF tones which are sent to the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (generally over 100 volts AC) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call. When a landline phone is inactive or "on hook", its alerting device is connected across the line through a capacitor, which prevents DC current from flowing through the line. The circuitry at the telephone exchange detects the absence of DC current flow and thus that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, the ringing signal transmitted by the telephone exchange activates the alerting device on the line. When the called party picks up the handset, the switchhook disconnects the alerting device and connects the audio circuitry to the line. The resulting low resistance now causes DC current to flow through this line, confirming that the called phone is now active. Both phones being active and connected through the exchange, the parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call. Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances. In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter. A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components. History. Credit for inventing the electric telephone remains in dispute. As with other great inventions such as radio, television, light bulb, and computer, there were several inventors who did pioneer experimental work on voice transmission over a wire and improved on each other's ideas. Innocenzo Manzetti, Antonio Meucci, Johann Philipp Reis, Elisha Gray, Alexander Graham Bell, and Thomas Edison, among others, have all been credited with pioneer work on the telephone. A Hungarian engineer, Tivadar Puskás invented the Telephone exchange in 1876. The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive. Early commercial instruments. Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" -their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument. Early telephones were locally powered, using either a dynamic transmitter or by the powering of a transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Early telephones used a single wire for the subscriber's line, with ground return used to complete the circuit (as used in telegraphs). The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive. At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential. Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire, and later over the same wire, but with a condenser (capacitor) in series with the bell coil to allow the AC ringer signal through while still blocking DC (keeping the phone "on hook"). Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking. Rural and other telephones that were not on a common battery exchange had a magneto or hand-cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator. In the 1890s a new smaller style of telephone was introduced, packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery and magneto were in a separate "bell box." In phones connected to common battery exchanges, the bell box was installed under a desk, or other out of the way place, since it did not need a battery or magneto. Cradle designs were also used at this time, having a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular. Disadvantages of single wire operation such as crosstalk and hum from nearby AC power wires had already led to the use of twisted pairs and, for long distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long distance calls from their own telephones but made an appointment to use a special sound proofed long distance telephone booth furnished with the latest technology. What turned out to be the most popular and longest lasting physical style of telephone was introduced in the early 20th century, including Bell's Model 102. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use sat in a cradle in the base unit. The of the Model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure. The dial switch in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1-10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle. After the 1930s, the base also enclosed the bell and induction coil, obviating the old separate bell box. Power was supplied to each subscriber line by central office batteries instead of a local battery, which required periodic service. For the next half century, the network behind the telephone became progressively larger and much more efficient, but after the dial was added the instrument itself changed little until touch tone replaced the dial in the 1960s. Digital telephony. The Public Switched Telephone Network (PSTN) has gradually evolved towards digital telephony which has improved the capacity and quality of the network. End-to-end analog telephone networks were first modified in the early 1960s by upgrading transmission networks with T1 carrier systems. Later technologies such as SONET and fiber optic transmission methods further advanced digital transmission. Although analog carrier systems existed, digital transmission made it possible to significantly increase the number of channels multiplexed on a single transmission medium. While today the end instrument remains analog, the analog signals reaching the aggregation point (Serving Area Interface (SAI) or the central office (CO)) are typically converted to digital signals. Digital loop carriers (DLC) are often used, placing the digital network ever closer to the customer premises, relegating the analog local loop to legacy status. IP telephony. Internet Protocol (IP) telephony (also known as Voice over Internet Protocol, VoIP), is a disruptive technology that is rapidly gaining ground against traditional telephone network technologies. As of January 2005, up to 10% of telephone subscribers in Japan and South Korea have switched to this digital telephone service. A January 2005 Newsweek article suggested that Internet telephony may be "the next big thing." As of 2006 many VoIP companies offer service to consumers and businesses. IP telephony uses an Internet connection and hardware IP Phones or softphones installed on personal computers to transmit conversations encoded as data packets. In addition to replacing POTS (plain old telephone service), IP telephony services are also competing with mobile phone services by offering free or lower cost connections via WiFi hotspots. VoIP is also used on private networks which may or may not have a connection to the global telephone network. Usage. By the end of 2006, there were a total of nearly 4 billion mobile and fixed-line subscribers and over 1 billion Internet users worldwide. This included 1.27 billion fixed-line subscribers and 2.68 billion mobile subscribers. Telephone operating companies. In some countries, many telephone operating companies (commonly abbreviated to "telco" in American English) are in competition to provide telephone services. Some of them are included in the following list. However, the list only includes facilities based providers and not companies which lease services from facilities based providers in order to serve their customers.