ratio of word probabilities predicted from brain for horse and butterfly

close this window

horse

butterfly

top 10 words in brain distribution (in article):
species animal horse wear male breed female time human hunt
top 10 words in brain distribution (in article):
species breed male human female size kill range live food
top 10 words in brain distribution (not in article):
cat bird woman egg city kill clothe lion elephant build
top 10 words in brain distribution (not in article):
animal cat wolf hunt dog wild population bear lion elephant
times more probable under horse 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under butterfly
(words not in the model)
The horse'" ("Equus ferus caballus") is a hoofed (ungulate) mammal, a subspecies of one of seven extant species of the family Equidae. The horse has evolved over the past 45 to 55 million years from a small multi-toed creature into the large, single-toed animal of today. Humans began to domesticate horses around 4000 BC, and their domestication is believed to have been widespread by 3000 BC; by 2000 BC the use of domesticated horses had spread throughout the Eurasian continent. Although most horses today are domesticated, there are still endangered populations of the Przewalski's Horse, the only remaining true wild horse, as well as more common feral horses which live in the wild but are descended from domesticated ancestors. There is an extensive, specialized vocabulary used to describe equine-related concepts, covering everything from anatomy to life stages, size, colors, markings, breeds, locomotion, and behavior. Horses are anatomically designed to use speed to escape predators, and have a well-developed sense of balance and a strong fight-or-flight instinct. Related to this need to flee from predators in the wild is an unusual trait: horses are able to sleep both standing up and lying down. Female horses, called mares, carry their young for approximately 11 months, and a young horse, called a foal, can stand and run shortly following birth. Most domesticated horses begin training under saddle or in harness between the ages of two and four. They reach full adult development by age five, and have an average lifespan of between 25 and 30 years. Horse breeds are loosely divided into three categories based on general temperament: spirited "hot bloods" with speed and endurance; "cold bloods," such as draft horses and some ponies, suitable for slow, heavy work; and "warmbloods," developed from crosses between hot bloods and cold bloods, often focusing on creating breeds for specific riding purposes, particularly in Europe. There are over 300 breeds of horses in the world today, developed for many different uses. Horses and humans interact in many ways, not only in a wide variety of sport competitions and non-competitive recreational pursuits, but also in working activities including police work, agriculture, entertainment, assisted learning and therapy. Horses were historically used in warfare. A wide variety of riding and driving techniques have been developed, using many different styles of equipment and methods of control. Many products are derived from horses, including meat, milk, hide, hair, bone, and pharmaceuticals extracted from the urine of pregnant mares. Humans provide domesticated horses with food, water and shelter, as well as attention from specialists such as veterinarians and farriers. Biology. Horse anatomy is described by a large number of specific terms, as illustrated by the chart to the right. Specific terms also describe various ages, colors and breeds. Age. Depending on breed, management and environment, the domestic horse today has a life expectancy of 25 to 30 years. It is uncommon, but a few animals live into their 40s and, occasionally, beyond. The oldest verifiable record was "Old Billy," a 19th-century horse that lived to the age of 62. In modern times, Sugar Puff, who had been listed in the Guinness Book of World Records as the world's oldest living pony, died in 2007, aged 56. Regardless of a horse's actual birth date, for most competition purposes an animal is considered a year older on January 1 of each year in the northern hemisphere and August 1 in the southern hemisphere. The exception is in endurance riding, where the minimum age to compete is based on the animal's calendar age. A very rough estimate of a horse's age can be made from looking at its teeth. The following terminology is used to describe horses of various ages: In horse racing, the definitions of colt, filly, mare, and stallion may differ from those given above. In the UK, Thoroughbred horse racing defines a colt as a male less than five years old, and a filly as a female less than five years old. In the USA, both Thoroughbred racing and harness racing defines colts and fillies as four years old and younger. Size. The English-speaking world measures the height of horses in hands, abbreviated "h" or "hh," for "hands high," measured at the highest point of an animal's withers, where the neck meets the back, chosen as a stable point of the anatomy, unlike the head or neck, which move up and down; one hand is. Intermediate heights are defined by hands and inches, rounding to the lower measurement in hands, followed by a decimal point and the number of additional inches between 1 and 3. Thus a horse described as "15.2 h," is 15 hands, 2 inches in height. The size of horses varies by breed, but can also be influenced by nutrition. The general rule for cutoff in height between what is considered a horse and a pony at maturity is 14.2 hands. An animal 14.2 h or over is usually considered to be a horse and one less than 14.2 h a pony. However, there are exceptions to the general rule. Some breeds which typically produce individuals both under and over 14.2 h are considered horses regardless of their height. Conversely, some pony breeds may have features in common with horses, and individual animals may occasionally mature at over 14.2 h, but are still considered to be ponies. The distinction between a horse and pony is not simply a difference in height, but takes account of other aspects of "phenotype" or appearance, such as conformation and temperament. Ponies often exhibit thicker manes, tails and overall coat. They also have proportionally shorter legs, wider barrels, heavier bone, shorter and thicker necks, and short heads with broad foreheads. They often have calmer temperaments than horses and also a high level of equine intelligence that may or may not be used to cooperate with human handlers. In fact, small size, by itself, is sometimes not a factor at all. While the Shetland pony stands on average 10 hands high, the Falabella and other miniature horses, which can be no taller than, the size of a medium-sized dog, are classified by their respective registries as very small horses rather than as ponies. Light riding horses such as Arabians, Morgans, or Quarter Horses usually range in height from 14 to 16 hands and can weigh from. Larger riding horses such as Thoroughbreds, American Saddlebreds or Warmbloods usually start at about 15.2 hands and often are as tall as 17 hands, weighing from. Heavy or draft horses such as the Clydesdale, Belgian, Percheron, and Shire are usually at least 16 to 18 hands high and can weigh from about. The largest horse in recorded history was probably a Shire horse named Sampson, who lived during the late 1800s. He stood 21.2½ hands high, and his peak weight was estimated at. The current record holder for the world's smallest horse is Thumbelina, a fully mature miniature horse affected by dwarfism. She is tall and weighs. Colors and markings. Horses exhibit a diverse array of coat colors and distinctive markings, described with a specialized vocabulary. Often, a horse is classified first by its coat color, before breed or sex. Flashy or unusual colors are sometimes very popular, as are horses with particularly attractive markings. Horses of the same color may be distinguished from one another by their markings. The genetics that create many horse coat colors have been identified, although research continues on specific genes and mutations that result in specific color traits. Essentially, all horse colors begin with a genetic base of "red" (chestnut) or "black," with the addition of alleles for spotting, graying, suppression or dilution of color, or other effects acting upon the base colors to create the dozens of possible coat colors found in horses. Horses which are light in color are often misnamed as being "white" horses. A horse that looks pure white is, in most cases, actually a middle-aged or older gray. Grays have black skin underneath their white hair coat (with the exception of small amounts of pink skin under white markings). The only horses properly called white are those with pink skin under a white hair coat, a fairly rare occurrence. There are no truly albino horses, with pink skin and red eyes, as albinism is a lethal condition in horses. Reproduction and development. Pregnancy lasts for approximately 335–340 days and usually results in one foal. Twins are very rare. Colts are carried on average about 4 days longer than fillies. Horses are a precocial species, and foals are capable of standing and running within a short time following birth. Horses, particularly colts, may sometimes be physically capable of reproduction at about 18 months. In practice, individuals are rarely allowed to breed before the age of three, especially females. Horses four years old are considered mature, although the skeleton normally continues to develop until the age of six; the precise time of completion of development also depends on the horse's size, breed, gender, and the quality of care provided by its owner. Also, if the horse is larger, its bones are larger; therefore, not only do the bones take longer to actually form bone tissue, but the epiphyseal plates are also larger and take longer to convert from cartilage to bone. These plates convert after the other parts of the bones, but are crucial to development. Depending on maturity, breed, and the tasks expected, young horses are usually put under saddle and trained to be ridden between the ages of two and four. Although Thoroughbred race horses are put on the track at as young as two years old in some countries, horses specifically bred for sports such as dressage are generally not entered into top-level competition until they are a minimum of four years old, because their bones and muscles are not solidly developed, nor is their advanced training complete. For endurance riding competition, horses are not deemed mature enough to compete until they are a full 60 calendar months (5 years) old. Skeletal system. Horses have a skeleton that averages 205 bones. A significant difference between the horse skeleton, compared to that of a human, is the lack of a collarbone—the horse's front limb system is attached to the spinal column by a powerful set of muscles, tendons and ligaments that attach the shoulder blade to the torso. The horse's legs and hooves are also unique structures. Their leg bones are proportioned differently from those of a human. For example, the body part that is called a horse's "knee" is actually made up of the carpal bones that correspond to the human wrist. Similarly, the hock, contains the bones equivalent to those in the human ankle and heel. The lower leg bones of a horse correspond to the bones of the human hand or foot, and the fetlock (incorrectly called the "ankle") is actually the proximal sesamoid bones between the cannon bones (a single equivalent to the human metacarpal or metatarsal bones) and the proximal phalanges, located where one finds the "knuckles" of a human. A horse also has no muscles in its legs below the knees and hocks, only skin, hair, bone, tendons, ligaments, cartilage, and the assorted specialized tissues that make up the hoof. Hooves. The critical importance of the feet and legs is summed up by the traditional adage, "no foot, no horse". The horse hoof begins with the distal phalanges, the equivalent of the human fingertip or tip of the toe, surrounded by cartilage and other specialized, blood-rich soft tissues such as the laminae. The exterior hoof wall and horn of the sole is made of essentially the same material as a human fingernail. The end result is that a horse, weighing on average, travels on the same bones as a human on tiptoe. For the protection of the hoof under certain conditions, some horses have horseshoes placed on their feet by a professional farrier. The hoof continually grows, and needs to be trimmed (and horseshoes reset, if used) every five to eight weeks. Teeth. Horses are adapted to grazing. In an adult horse, there are 12 incisors, adapted to biting off the grass or other vegetation, at the front of the mouth. There are 24 teeth adapted for chewing, the premolars and molars, at the back of the mouth. Stallions and geldings have four additional teeth just behind the incisors, a type of canine teeth that are called "tushes." Some horses, both male and female, will also develop one to four very small vestigial teeth in front of the molars, known as "wolf" teeth, which are generally removed because they can interfere with the bit. There is an empty interdental space between the incisors and the molars where the bit rests directly on the bars (gums) of the horse's mouth when the horse is bridled. The incisors show a distinct wear and growth pattern as the horse ages, as well as change in the angle at which the chewing surfaces meet. The teeth continue to erupt throughout life as they are worn down by grazing, so a very rough estimate of a horse's age can be made by an examination of its teeth, although diet and veterinary care can affect the rate of tooth wear. Digestion. Horses are herbivores with a digestive system adapted to a forage diet of grasses and other plant material, consumed steadily throughout the day. Therefore, compared to humans, they have a relatively small stomach but very long intestines to facilitate a steady flow of nutrients. A horse will eat of food per day and, under normal use, drink to of water. Horses are not ruminants, so they have only one stomach, like humans, but unlike humans, they can also digest cellulose from grasses due to the presence of a "hind gut" called the cecum, or "water gut," which food goes through before reaching the large intestine. Unlike humans, horses cannot vomit, so digestion problems can quickly cause colic, a leading cause of death. Senses. The horse's senses are generally superior to those of a human. As prey animals, they must be aware of their surroundings at all times. They have the largest eyes of any land mammal, and because their eyes are positioned on the sides of their heads, horses have a range of vision of more than 350°, with approximately 65° of this being binocular (seen with both eyes) and the remaining 285° monocular (seen with only one eye). Horses have excellent day and night vision, but studies indicate that they have two-color, or dichromatic vision; their color vision is somewhat like red-green color blindness in humans. This means that certain colors, especially red and related colors, appear more green. Their hearing is good, and the pinna of each ear can rotate up to 180°, giving the potential for 360° hearing without having to move the head. Their sense of smell, while much better than that of humans, is not their strongest asset; they rely to a greater extent on vision. Horses have a great sense of balance, due partly to their ability to feel their footing and partly to highly developed proprioceptive abilities (the unconscious sense of where the body and limbs are at all times). A horse's sense of touch is well developed. The most sensitive areas are around the eyes, ears and nose. Via touch, horses perceive and respond immediately to changes in their environment, sensing contact as subtle as an insect landing anywhere on the body. Horses have an advanced sense of taste that allows them to sort through grains and grasses to choose what they would most like to eat, and their prehensile lips can easily sort even the smallest grains. Horses generally will not eat poisonous plants. However, there are exceptions and horses will occasionally eat toxic amounts of poisonous plants even when there is adequate healthy food. Movement. All horses move naturally with four basic gaits: the four-beat walk, which averages four miles per hour; the two-beat trot or jog, which averages per hour (faster for harness racing horses); and the leaping gaits known as the canter or lope (a three-beat gait that is per hour), and the gallop. The gallop averages per hour. The world record for a horse galloping over a short, sprint distance is per hour. Besides these basic gaits, some horses perform a two-beat pace, instead of the trot. In addition, there are several four-beat "ambling" gaits that are approximately the speed of a trot or pace, though smoother to ride. These include the lateral slow gait, rack, running walk, and tölt as well as the diagonal fox trot. Ambling gaits are often genetic traits in specific breeds, known collectively as gaited horses. In most cases, gaited horses replace the standard trot with one of the ambling gaits. Behavior. Horses are prey animals with a well-developed fight-or-flight instinct. Their first response to threat is to startle and usually flee, although they are known to stand their ground and defend themselves or their offspring in cases where flight is not possible, or when their young are threatened. They also tend to be curious; when startled, they will often hesitate an instant to ascertain the cause of their fright, and may not always flee from something that they perceive as non-threatening. Through selective breeding, some breeds of horses are quite docile, particularly certain large draft horses. Most light horse riding breeds were developed for speed, agility, alertness and endurance; natural qualities that extend from their wild ancestors. Horses are herd animals, with a clear hierarchy of rank, led by a dominant animal (usually a mare). They are also social creatures who are able to form companionship attachments to their own species and to other animals, including humans. They communicate in various ways, including vocalizations such as nickering or whinnying, mutual grooming, and body language. Many horses will become difficult to manage if they are isolated. Through proper training, it is possible to teach any horse to accept a human as a type of companion, and thus be comfortable away from other horses. When confined with insufficient companionship, exercise or stimulation, individuals may develop stable vices, an assortment of bad habits, mostly psychological in origin, that include wood chewing, wall kicking, "weaving" (rocking back and forth) and other problems. Intelligence and learning. In the past, horses were considered unintelligent, with no abstract thinking ability, unable to generalize, and driven primarily by a herd mentality. However, recent studies show that they perform a number of cognitive tasks on a daily basis, and frequently engage in mental challenges that include food procurement and social system identification. They have also been shown to have good spatial discrimination abilities. Studies have assessed equine intelligence in the realms of problem solving, learning speed, and knowledge retention. Results show that horses excel at simple learning, but also are able to solve advanced cognitive challenges that involve categorization and concept learning. They have been shown to learn from habituation, desensitization, Pavlovian conditioning, and operant conditioning. They respond to and learn from both positive and negative reinforcement. Domesticated horses tend to face greater mental challenges than wild horses, due to living in artificial environments that stifle instinctual behavior while learning tasks that are not natural. Horses are creatures of habit that respond and adapt well to regimentation, and respond best when the same routines and techniques are used consistently. Some trainers believe that "intelligent" horses are reflections of intelligent trainers who effectively use response conditioning techniques and positive reinforcement to train in the style that fits best with an individual animal's natural inclinations. Others who handle horses regularly note that personality also may play a role separate from intelligence in determining how a given animal responds to various experiences. Temperament. Thoroughbred race horses are a "hot blooded" breed. Horses are mammals, and as such are "warm-blooded" creatures, as opposed to reptiles, which are cold-blooded. However, these words have developed a separate meaning in the context of equine terminology, used to describe temperament, not body temperature. For example, the "hot-bloods," such as many race horses, exhibit more sensitivity and energy, while the "cold-bloods," such as most draft breeds, are quieter and calmer. "Hot blooded" breeds include "oriental horses" such as the Akhal-Teke, Barb, Arabian horse and now-extinct Turkoman horse, as well as the Thoroughbred, a breed developed in England from the older oriental breeds. Hot bloods tend to be spirited, bold, and learn quickly. They are bred for agility and speed. They tend to be physically refined—thin-skinned, slim, and long-legged. The original oriental breeds were brought to Europe from the Middle East and North Africa when European breeders wished to infuse these traits into racing and light cavalry horses. The "cold blooded" draft breeds are powerful and heavily-muscled Muscular, heavy draft horses are known as "cold bloods," as they are bred not only for strength, but also to have the calm, patient temperament needed to pull a plow or a heavy carriage full of people. They are sometimes nicknamed "gentle giants." Well-known draft breeds include the Belgian and the Clydesdale. Some, like the Percheron are lighter and livelier, developed to pull carriages or to plow large fields in drier climates. Others, such as the Shire, are slower and more powerful, bred to plow fields with heavy, clay-based soils. The cold-blooded group also includes some pony breeds. "Warmblood" breeds, such as the Trakehner or Hanoverian, developed when European carriage and war horses were crossed with Arabians or Thoroughbreds, producing a riding horse with more refinement than a draft horse, but greater size A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in obtect pupae). Within hours, the wings form a cuticle so hard and well-joined to the body that pupae can be picked up and handled without damage to the wings. Pupa. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding and begins "wandering" in the quest of a suitable pupation site, often the underside of a leaf. The larva transforms into a pupa (or chrysalis) by anchoring itself to a substrate and moulting for the last time. The chrysalis is usually incapable of movement, although some species can rapidly move the abdominal segments or produce sounds to scare potential predators. The pupal transformation into a butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in the adult color pattern are marked by changes in the expression of particular transcription factors in the early pupa. Adult or imago. The adult, sexually mature, stage of the insect is known as the imago. As Lepidoptera, butterflies have four wings that are covered with tiny scales (see photo). The fore and hindwings are not hooked together, permitting a more graceful flight. An adult butterfly has six legs, but in the nymphalids, the first pair is reduced. After it emerges from its pupal stage, a butterfly cannot fly until the wings are unfolded. A newly-emerged butterfly needs to spend some time inflating its wings with blood and letting them dry, during which time it is extremely vulnerable to predators. Some butterflies' wings may take up to three hours to dry while others take about one hour. Most butterflies and moths will excrete excess dye after hatching. This fluid may be white, red, orange, or in rare cases, blue. External morphology. Butterflies have two antennae, two compound eyes, and a proboscis. Adult butterflies have four wings: a forewing and hindwing on both the left and the right side of the body. The body is divided into three segments: the head, thorax, and the abdomen. They have two antennae, two compound eyes, and a proboscis. Scales. Butterflies are characterized by their scale-covered wings. The coloration of butterfly wings is created by minute scales. These scales are pigmented with melanins that give them blacks and browns, but blues, greens, reds and iridescence are usually created not by pigments but the microstructure of the scales. This structural coloration is the result of coherent scattering of light by the photonic crystal nature of the scales. The scales cling somewhat loosely to the wing and come off easily without harming the butterfly. Polymorphism. Many adult butterflies exhibit polymorphism, showing differences in appearance. These variations include geographic variants and seasonal forms. In addition many species have females in multiple forms, often with mimetic forms. Sexual dimorphism in coloration and appearance is widespread in butterflies. In addition many species show sexual dimorphism in the patterns of ultraviolet reflectivity, while otherwise appearing identical to the unaided human eye. Most of the butterflies have a sex-determination system that is represented as ZW with females being the heterogametic sex (ZW) and males homogametic (ZZ). Genetic abnormalities such as gynandromorphy also occur from time to time. In addition many butterflies are infected by "Wolbachia" and infection by the bacteria can lead to the conversion of males into females or the selective killing of males in the egg stage. Mimicry. Batesian and Mullerian mimicry in butterflies is common. Batesian mimics imitate other species to enjoy the protection of an attribute they do not share, aposematism in this case. The Common Mormon of India has female morphs which imitate the unpalatable red-bodied swallowtails, the Common Rose and the Crimson Rose. Mullerian mimicry occurs when aposematic species evolve to resemble each other, presumably to reduce predator sampling rates, the Heliconius butterflies from the Americas being a good example. Wing markings called eyespots are present in some species; these may have an automimicry role for some species. In others, the function may be intraspecies communication, such as mate attraction. In several cases, however, the function of butterfly eyespots is not clear, and may be an evolutionary anomaly related to the relative elasticity of the genes that encode the spots. Seasonal polyphenism. div name="wet-dry forms" Many of the tropical butterflies have distinctive seasonal forms. This phenomenon is termed "seasonal polyphenism" and the seasonal forms of the butterflies are called the dry-season and wet-season forms. How the season affects the genetic expression of patterns is still a subject of research. Experimental modification by ecdysone hormone treatment has demonstrated that it is possible to control the continuum of expression of variation between the wet and dry-season forms. The dry-season forms are usually more cryptic and it has been suggested that the protection offered may be an adaptation. Some also show greater dark colours in the wet-season form which may have thermoregulatory advantages by increasing ability to absorb solar radiation. Habits. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen, tree sap, rotting fruit, dung, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants although in general they do not carry as much pollen load as the Hymenoptera. They are however capable of moving pollen over greater distances. Within the Lepidoptera, the Hawkmoths and the Noctuidae are dominant as pollinators. As adults, butterflies consume only liquids and these are sucked by means of their proboscis. They feed on nectar from flowers and also sip water from damp patches. This they do for water, for energy from sugars in nectar and for sodium and other minerals which are vital for their reproduction. Several species of butterflies need more sodium than provided by nectar. They are attracted to sodium in salt and they sometimes land on people, attracted by human sweat. Besides damp patches, some butterflies also visit dung, rotting fruit or carcasses to obtain minerals and nutrients. In many species, this Mud-puddling behaviour is restricted to the males and studies have suggested that the nutrients collected are provided as a nuptial gift along with the spermatophore during mating. Butterflies sense the air for scents, wind and nectar using their antennae. The antennae come in various shapes and colours. The hesperids have a pointed angle or hook to the antennae, while most other families show knobbed antennae. The antennae are richly covered with sensillae. A butterfly's sense of taste is coordinated by chemoreceptors on the tarsi, which work only on contact, and are used to determine whether an egg-laying insect's offspring will be able to feed on a leaf before eggs are laid on it. Many butterflies use chemical signals, pheromones, and specialized scent scales (androconia) and other structures (coremata or 'Hair pencils' in the Danaidae) are developed in some species. Vision is well developed in butterflies and most species are sensitive to the ultraviolet spectrum. Many species show sexual dimorphism in the patterns of UV reflective patches. Color vision may be widespread but has been demonstrated in only a few species. Some butterflies have organs of hearing and some species are also known to make stridulatory and clicking sounds. Many butterflies, such as the Monarch butterfly, are migratory and capable of long distance flights. They migrate during the day and use the sun to orient themselves. They also perceive polarized light and use it for orientation when the sun is hidden. Many species of butterfly maintain territories and actively chase other species or individuals that may stray into them. Some species will bask or perch on chosen perches. The flight styles of butterflies are often characteristic and some species have courtship flight displays. Basking is an activity which is more common in the cooler hours of the morning. Many species will orient themselves to gather heat from the sun. Some species have evolved dark wingbases to help in gathering more heat and this is especially evident in alpine forms. Flight. Like many other members of the insect world, the lift generated by butterflies is more than what can be accounted for by steady-state, non-transitory aerodynamics. Studies using "Vanessa atalanta" in a windtunnel show that they use a wide variety of aerodynamic mechanisms to generate force. These include wake capture, vortices at the wing edge, rotational mechanisms and Weis-Fogh 'clap-and-fling' mechanisms. The butterflies were also able to change from one mode to another rapidly. (See also Insect flight) Migration. Many butterflies migrate over long distances. Particularly famous migrations being those of the Monarch butterfly from Mexico to North America, a distance of about 4,000 to 4,800 kilometres (2500-3000 miles). Other well known migratory species include the Painted Lady and several of the Danaine butterflies. Spectacular and large scale migrations associated with the Monsoons are seen in peninsular India. Migrations have been studied in more recent times using wing tags and also using stable hydrogen isotopes. Butterflies have been shown to navigate using time compensated sun compasses. They can see polarized light and therefore orient even in cloudy conditions. The polarized light in the region close to the ultraviolet spectrum is suggested to be particularly important. It is suggested that most migratory butterflies are those that belong to semi-arid areas where breeding seasons are short. The life-histories of their host plants also influence the strategies of the butterflies. Defense. Butterflies are threatened in their early stages by parasitoids and in all stages by predators, diseases and environmental factors. They protect themselves by a variety of means. Chemical defenses are widespread and are mostly based on chemicals of plant origin. In many cases the plants themselves evolved these toxic substances as protection against herbivores. Butterflies have evolved mechanisms to sequester these plant toxins and use them instead in their own defense. These defense mechanisms are effective only if they are also well advertised and this has led to the evolution of bright colours in unpalatable butterflies. This signal may be mimicked by other butterflies. These mimetic forms are usually restricted to the females. Cryptic coloration is found in many butterflies. Some like the oakleaf butterfly are remarkable imitations of leaves. As caterpillars, many defend themselves by freezing and appearing like sticks or branches. Some papilionid caterpillars resemble bird dropping in their early instars. Some caterpillars have hairs and bristly structures that provide protection while others are gregarious and form dense aggregations. Some species also form associations with ants and gain their protection (See Myrmecophile). Behavioural defenses include perching and wing positions to avoid being conspicuous. Some female Nymphalid butterflies are known to guard their eggs from parasitoid wasps. Eyespots and tails are found in many lycaenid butterflies and these divert the attention of predators from the more vital head region. An alternative theory is that these cause ambush predators such as spiders to approach from the wrong end and allow for early visual detection. A butterfly's hind wings are thought to allow the butterfly to take, swift, tight turns to evade predators. Notable species. There are between 15,000 and 20,000 species of butterflies worldwide. Some well known species from around the world include: Art. Artistic depictions of butterflies have been used in many cultures including Egyptian hieroglyphs 3500 years ago. Today, butterflies are widely used in various objects of art and jewelry: mounted in frame, embedded in resin, displayed in bottles, laminated in paper, and used in some mixed media artworks and furnishings. Butterflies have also inspired the "butterfly fairy" as an art and fictional character. Symbolism. According to the “Butterflies” chapter in by Lafcadio Hearn, a butterfly is seen as the personification of a person's soul; whether they be living, dying, or already dead. One Japanese superstition says that if a butterfly enters your guestroom and perches behind the bamboo screen, the person whom you most love is coming to see you. However, large numbers of butterflies are viewed as bad omens. When Taira no Masakado was secretly preparing for his famous revolt, there appeared in Kyoto so vast a swarm of butterflies that the people were frightened -thinking the apparition to be a portent of coming evil. The Russian word for "butterfly", бабочка ("bábochka"), also means "bow tie". It is a diminutive of "baba" or "babka" ("woman, grandmother, cake", whence also "babushka"= "grandmother". The Ancient Greek word for "butterfly" is ψυχή ("psȳchē"), which primarily means "soul", "mind". According to Mircea Eliade's "Encyclopedia of Religion", some of the Nagas of Manipur trace their ancestry from a butterfly. In Chinese culture two butterflies flying together are a symbol of love. Also a famous Chinese folk story called Butterfly Lovers. The Taoist philosopher Zhuangzi once had a dream of being a butterfly flying without care about humanity, however when he woke up and realized it was just a dream, he thought to himself "Was I before a man who dreamt about being a butterfly, or am I now a butterfly who dreams about being a man?" In some old cultures, butterflies also symbolize rebirth into a new life after being inside a cocoon for a period of time. Jose Rizal delivered a speech in 1884 in a banquet and mentioned "the Oriental chrysalis... is about to leave its cocoon" comparing the emergence of a "new Philippines" with that of butterfly metamorphosis. He has also often used the butterfly imagery in his poems and other writings to express the Spanish Colonial Filipinos' longing for liberty. Much later, in a letter to Ferdinand Blumentritt, Rizal compared his life in exile to a weary butterfly with sun-burnt wings. Some people say that when a butterfly lands on you it means good luck. However, in Devonshire, people would traditionally rush around to kill the first butterfly of the year that they see, or else face a year of bad luck. Also, in the Philippines, a lingering black butterfly or moth in the house is taken to mean that someone in the family has died or will soon die. The idiom "butterflies in the stomach" is used to describe a state of nervousness. Technological inspiration. Researches on the wing structure of Palawan Birdwing butterflies led to new wide wingspan kite and aircraft designs. Studies on the reflection and scattering of light by the scales on wings of swallowtail butterflies led to the innovation of more efficient light-emitting diodes. The structural coloration of butterflies is inspiring nanotechnology research to produce paints that do not use toxic pigments and in the development of new display technologies. Furthermore, the discoloration and health of butterflies in butterfly farms, is now being studied for use as indicators of air quality in several cities.