ratio of word probabilities predicted from brain for door and refrigerator

close this window

door

refrigerator

top 10 words in brain distribution (in article):
light material design power build type wood common allow size
top 10 words in brain distribution (in article):
century time cut modern design style type metal allow hold
top 10 words in brain distribution (not in article):
plant water produce drink fruit tree lamp wine seed grow
top 10 words in brain distribution (not in article):
church wear horse bishop iron blade woman head steel term
times more probable under door 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under refrigerator
(words not in the model)
A door'" is a moveable barrier used to cover an opening. Doors are used widely and are found in walls or partitions of a building or space, furniture such as cupboards, cages, vehicles, and containers. A door can be opened to give access and closed more or less securely using a combination of latches and locks. (See article Door security). Doors are nearly universal in buildings of all kinds, allowing passage between the inside and outside, and between internal rooms. When open, they admit ventilation and light. The door is used to control the physical atmosphere within a space by enclosing it, excluding air drafts, so that interiors may be more effectively heated or cooled. Doors are significant in preventing the spread of fire. They act as a barrier to noise. (See article Door safety). They are also used to screen areas of a building for aesthetic purposes, keeping formal and utility areas separate. Doors also have an aesthetic role in creating an impression of what lies beyond. Doors are often symbolically endowed with ritual purposes, and the guarding or receiving of the keys to a door, or being granted access to a door can have special significance. Similarly, doors and doorways frequently appear in metaphorical or allegorical situations, literature and the arts, often as a portent of change. Design and construction styles. Many kinds of doors have specific names, depending on their purpose. The most common variety of door consists of a single rigid panel that fills the doorway. Many variations on this basic design are possible, such as "double" doors that have two adjacent independent panels hinged on each side of the doorway. A "'Dutch door'" or "'stable door'" is divided in half horizontally. Traditionally the top half can be opened to allow a horse or other animal to be fed, while the bottom half remained closed to keep the animal inside. "'Saloon doors'" are a pair of lightweight swing doors often found in public bars. Saloon doors, also known as "'cafe doors'", often use "'double action hinges'", which will return the door to the center, regardless of which direction it is opened, due to the double action springs in the doors. Saloon doors that only extend from knee-level to chest-level are known as "'batwing doors'". A "'blind door'" is a door with no visible trim or operable components. It is designed to blend with the adjacent wall in all finishes, and visually to be a part of the wall, a disguised door. A "'barn door'" is a door characteristic of a barn. They are often always found on barns, and because of a barn's immense size (often) doors are subsequently big for utility. A "'French door'", also called a "'French window'", is a door that has multiple windows ("lights") set into it for the full length of the door. Traditional French doors are assembled from individual small pieces of glass and mullions. These doors are also known as true divided lite[sic] French doors. French doors made of double-pane glass (on exterior doors for insulation reasons) may have a decorative grille embedded between the panes, or may also be true divided lite French doors. The decorative grille may also be superimposed on top of single pane of glass in the door. A "'louvred door'" has fixed or movable wooden fins (often called slats or louvers) which permit open ventilation whilst preserving privacy and preventing the passage of light to the interior. Being relatively weak structures, they are most commonly used for wardrobes and drying rooms, where security is of less importance than good ventilation, although a very similar structure is commonly used to form window shutters. A "'flush door'" is a completely smooth door, having plywood or MDF fixed over a light timber frame, the hollow parts of which are often filled with a cardboard core material. Flush doors are most commonly employed in the interior of a dwelling, although slightly more substantial versions are occasionally used as exterior doors, especially within hotels and other buildings containing many independent dwellings. A "'moulded door'" has the same structure as that of flush door. The only difference is that the surface material is a moulded skin made of HDF MDF. It is commonly used as interior doors. A "'ledge and brace door'" is a door made from multiple vertical planks fixed together by two horizontal planks (the ledges) and kept square by a diagonal plank (the brace). A "'wicket door'" is a normal sized door built into a much larger one, such as the gate of a city or castle. A "'bifold door'" id="bifold"/> is a door unit that has several sections, folding in pairs. Wood is the most common material, and doors may also be metal or glass. Bifolds are most commonly made for closets, but may also be used as units between rooms. A "'sliding glass door'", sometimes called an Arcadia door, is a door made of glass that slides open and sometimes has a screen. "'Australian doors'" are a pair of plywood swinging doors often found in Australian public houses. These doors are generally red or brown in color and bear a resemblance to the more formal doors found in other British Colonies' public houses. A "'false door'" is a wall decoration that looks like a door. In ancient Egyptian architecture, this was a common element in a tomb, the false door representing a gate to the afterlife. They can also be found in the funerary architecture of the desert tribes (e.g., Libyan Ghirza). Hinged doors. Most doors are hinged along one side to allow the door to pivot away from the doorway in one direction but not in the other. The axis of rotation is usually vertical. In some cases, such as hinged garage doors often horizontal, above the door opening. Doors can be hinged so that the axis of rotation is not in the plane of the door to reduce the space required on the side to which the door opens. This requires a mechanism so that the axis of rotation is on the side other than that in which the door opens. This is sometimes the case in trains, such as for the door to the toilet, which opens inward. "'A swing door'" has special hinges that allow it to open either outwards or inwards, and is usually sprung to keep it closed. A "'Mead door'" is a double action pivot door capable of swinging both ways. First introduced by Scott Mead, established in Leicester, England. The Mead door is susceptible to forced entry. Sliding doors. It is often useful to have doors which slide along tracks, often for space or aesthetic considerations. A bypass door"' is a door unit that has two or more sections. The doors can slide in either direction along one axis on parallel overhead tracks, sliding past each other. They are most commonly used in closets, in order to access one side of the closet at a time. The doors in a bypass unit will overlap slightly when viewed from the front, in order not to have a visible gap between them. Doors which slide between two wall panels are called pocket doors'". Sliding glass doors are common in many houses, particularly as an entrance to the backyard. Such doors are also popular for use for the entrances to commercial structures. A "'tambour door'" is made of narrow horizontal slats and "rolls" up and down by sliding along vertical tracks and is typically found in entertainment centres and cabinets. Folding doors. Folding doors have an even number of sections, generally 2 to 4, folding in pairs. The doors can open from either side for one pair, or fold off both sides for two pairs. Rotating doors. A "'revolving door'" normally has four wings leaves that hang on a center shaft and rotate one way about a vertical axis. The door may be motorized, or pushed manually using pushbars. People can walk out of and into the building at the same time. Between the point of access and the point of exit the user walks through an airlock. Revolving doors therefore create a good seal from the outside and help to reduce C and heating costs climate control from the building. This type of door is also often seen as a mark of prestige and glamour for a building and it not unusual for neighbouring buildings to install their own revolving doors when a rival building gets one. A"' butterfly door'" called because of its two "wings". It consists of a double-wide panel with its rotation axle in the centre, effectively creating two separate openings when the door is opened. Butterfly doors are made to rotate open in one direction (usually counterclockwise), and rotate closed in the opposite direction. The door is not equipped with handles, so it is a "push" door. This is for safety, because if it could open in both directions, someone approaching the door might be caught off-guard by someone else opening the other side, thus impacting the first person. Such doors are popular in public transit stations, as it has a large capacity, and when the door is opened, traffic passing in both directions keeps the door open. They are particularly popular in underground subway stations, because they are heavy, and when air currents are created by the movement of trains, the force will be applied to both wings of the door, thus equalizing the force on either side, keeping the door shut. "'French Doors'" derived from an original French design called the casement door, can be created with two out-swinging or in-swinging door panels or two sliding panels or pocket doors. Others. An "'up-and-over'" door is often used in garages. Instead of hinges it has a mechanism, often counterbalanced or sprung, that allows it to be lifted so that it rests horizontally above the opening. Also known as an "'overhead'" door. "'Automatic doors'" are powered open and closed either by power, spring, or both. There are several methods by which an automatic door is activated: In addition to activation sensors automatic doors are generally fitted with safety sensors. These are usually an infrared curtain or beam, but can be a pressure mat fitted on the swing side of the door. The purpose of the safety sensor is to prevent the door from colliding with an object in its path by stopping or slowing its motion. "'Inward opening doors'" are doors that can only be opened (or forced open) from outside a building. Such doors pose a substantial fire risk to occupants of occupied buildings when they are locked. As such doors can only be forced open from the outside, building occupants would be prevented from escaping. In commercial and retail situations manufacturers have included in the design a mechanism that allows an inward opening door to be pushed open outwards in the event of an emergency (which is often a regulatory requirement). This is known as a 'breakaway' feature. Pushing the door outward at its closed position, through a switch mechanism, disconnects power to the latch and allows the door to swing outward. Upon returning the door to the closed position, power is restored. Applications. Doors have numerous general and specialized uses in buildings, storage devices, vehicles, etc. In building interiors, doors are generally used to separate interior spaces, rooms, closets, etc. for privacy, convenience, and safety reasons. Doors are also used to secure passages into a building from the exterior for reasons of safety and climate control. Other than these common usages, doors also have the following applications: Doorway. When framed in wood for snug fitting of a door, the doorway consists of two vertical "jambs" on either side, a "lintel" or "head jamb" at the top, and perhaps a "threshold" at the bottom. When a door has more than one movable section, one of the sections may be called a "leaf". See door furniture for a discussion of attachments to doors such as door handles and doorknobs. Related hardware. Door furniture or hardware refers to any of the items that are attached to a door or a drawer to enhance its functionality or appearance. This includes items such as hinges, handles, door stops, etc. Door construction. Panel doors'" (doors built with frame and panel construction, also called "'stile and rail doors'"): "'Plank and batten doors'", (an older design consisting primarily of vertical slats): "'Ledged and braced doors'" Consists of vertical tongue and grooved boards held together with battens and diagonal braces. "'Frame and filled door'" Consists of a solid timber frame, filled on one face, face with Tongue and Grooved boards. Quite often used externally with the boards on the weather face. "'Flush doors'" (many modern doors, including most interior doors): Door swings, or handing, are always determined from the secure side of the door (ie. the side you use the key on, outside to inside, or public to private). Sizing: A standard US door size 36" x 80" (0.91 m x 2.03 m). Note: In Australia, this is different. The fridge rule applies (you can't stand in a fridge, the door always opens towards you). If the hinges are on the left then its a left hand (or left hung) door. If the hinges are on the right then its a right hand (or right hung) door. See the Australian Standards for Installation of Timber Doorsets, AS 1909-1984 pg 6. History. The earliest records are those represented in the paintings of the Egyptian tombs, in which they are shown as single or double doors, each in a single piece of wood. In Egypt, where the climate is intensely dry, there would be no fear of their warping, but in other countries it would be necessary to frame them, which according to Vitruvius (iv. 6.) was done with stiles (sea si) and rails "(see: Frame and panel)": the spaces enclosed being filled with panels (tympana) let into grooves made in the stiles and rails. The stiles were the vertical boards, one of which, tenoned or hinged, is known as the hanging stile, the other as the middle or meeting stile. The horizontal cross pieces are the top rail, bottom rail, and middle or intermediate rails. The most ancient doors were in timber, those made for King Solomon's temple being in olive wood (I Kings vi. 31-35), which were carved and overlaid with gold. The doors dwelt upon in Homer would appear to have been cased in silver or brass. Besides Olive wood, elm, cedar, oak and cypress were used. All ancient doors were hung by pivots at the top and bottom of the hanging stile which worked in sockets in the lintel and sill, the latter being always in some hard stone such as basalt or granite. Those found at Nippur by Dr. Hilprecht, dating from 2000 B.C. were in dolerite. The tenons of the gates at Balawat were sheathed with bronze (now in the British Museum). These doors or gates were hung in two leaves, each about wide and. high; they were encased with bronze bands or strips, 10 in. high, covered with repouss decoration of figures, etc. The wood doors would seem to have been about 3 in. thick, but the hanging stile was over diameter. Other sheathings of various sizes in bronze have been found, which proves this to have been the universal method adopted to protect the wood pivots. In the Hauran in Syria, where timber is scarce the doors were made in stone, and one measuring by is in the British Museum; the band on the meeting stile shows that it was one of the leaves of a double door. At Kuffeir near Bostra in Syria, Burckhardt found stone doors, 9 to. high, being the entrance doors of the town. In Etruria many stone doors are referred to by Dennis. The ancient Greek and Roman doors were either single doors, double doors, sliding doors or folding doors, in the last case the leaves were hinged and folded back. In Eumachia, is a painting of a door with three leaves. In the tomb of Theron at Agrigentum there is a single four-panel door carved in stone. In the Blundell collection is a bas-relief of a temple with double doors, each leaf with five panels. Among existing examples, the bronze doors in the church of SS. Cosmas and Damiano, in Rome, are important examples of Roman metal work of the best period; they are in two leaves, each with two panels, and are framed in bronze. Those of the Pantheon are similar in design, with narrow horizontal panels in addition, at the top, bottom and middle. Two other bronze doors of the Roman period are in the Lateran Basilica. Heron of Alexandria created the earliest known automatic door in the 1st century AD during the era of Roman Egypt. The first foot-sensor-activated automatic door was made in China during the reign of Emperor Yang of Sui (r. 604–618), who had one installed for his royal library. The first automatic gate operators were later created in 1206 by the Arabic inventor, Al-Jazari. The doors of the church of the Nativity at Bethlehem (6th century) are covered with plates of bronze, cut out in patterns: those of Hagia Sophia at Constantinople, of the 8th and 9th century, are wrought in bronze, and the west doors of the cathedral of Aix-la-Chapelle (9th century), of similar manufacture, were probably brought from Constantinople, as also some of those in St. Marks, Venice. Of the 11th and 12th centuries there are numerous examples of bronze doors, the earliest being one at Hildesheim, Germany (1015). Of others in South Italy and Sicily, the following are the finest: in Sant Andrea, Amalfi (1060); Salerno (1099); Canosa (1111); Troia, two doors (1119 and 1124); Ravello (1179), by Barisano of Trani, who also made doors for Trani cathedral; A refrigerator'" (often called a "'fridge'" for short) is a cooling appliance comprising a thermally insulated compartment and a heat pump: a mechanism to transfer heat from it to the external environment, cooling the contents to a temperature below ambient. Refrigerators are extensively used to store foods which deteriorate at ambient temperatures; spoilage from bacterial growth and other processes is much slower at low temperatures. A device described as a "refrigerator" maintains a temperature a few degrees above the freezing point of water; a similar device which maintains a temperature below the freezing point of water is called a "'freezer'". The refrigerator is a relatively modern invention among kitchen appliances. It replaced the icebox, which had been a common household appliance for almost a century and a half prior. For this reason, a refrigerator is sometimes referred to as an "icebox". Freezers keep their contents frozen. They are used both in households and for commercial use. Most freezers operate around minus 18 °C (0 °F). Domestic freezers can be included as a compartment in a refrigerator, sharing the same mechanism or with a separate mechanism, or can be standalone units. Domestic freezers are generally upright units, resembling refrigerators, or chests, resembling upright units laid on their backs. Many modern freezers come with an icemaker. Commercial fridge and freezer units, which go by many other names, were in use for almost 40 years prior to the common home models. They used toxic ammonia gas systems, making them unsafe for home use. Practical household refrigerators were introduced in 1915 and gained wider acceptance in the United States in the 1930s as prices fell and non-toxic, non-flammable synthetic refrigerants such as Freon or R-12 were introduced. It is notable that while 60% of households in the US owned a refrigerator by the 1930s, it was not until 40 years later, in the 1970s, that the refrigerator achieved a similar level of penetration in the United Kingdom. History. Before the invention of the refrigerator, icehouses were used to provide cool storage for most of the year. Placed near freshwater lakes or packed with snow and ice during the winter, they were once very common. Using the environment to cool foodstuffs is still common today. On mountainsides, runoff from melting snow higher up is a convenient way to cool drinks, and during the winter months simply placing milk outside is sufficient to greatly extend its useful life. In the 11th century, the Persian physicist and chemist, Ibn Sina (Avicenna), invented the refrigerated coil, which condenses aromatic vapours. This was a breakthrough in distillation technology and he made use of it in his steam distillation process, which requires refrigerated tubing, to produce essential oils. The first known artificial refrigeration was demonstrated by William Cullen at the University of Glasgow in 1748. Between 1805, when Oliver Evans designed the first refrigeration machine that used vapor instead of liquid, and 1902 when Willis Haviland Carrier demonstrated the first air conditioner, scores of inventors contributed many small advances in cooling machinery. In 1850 or 1851, Dr. John Gorrie demonstrated an ice maker. In 1857, Australian James Harrison introduced vapor-compression refrigeration to the brewing and meat packing industries. Ferdinand Carré of France developed a somewhat more complex system in 1859. Unlike earlier compression-compression machines, which used air as a coolant, Carré's equipment contained rapidly expanding ammonia. The absorption refrigerator was invented by Baltzar von Platen and Carl Munters in 1922, while they were still students at the Royal Institute of Technology in Stockholm, Sweden. It became a worldwide success and was commercialized by Electrolux. Other pioneers included Charles Tellier, David Boyle, and Raoul Pictet. At the start of the 20th Century, about half of households in the United States relied on melting ice (in an icebox) to keep food cold, while the remaining half had no cooled storage at all. The ice used for household storage was expensive because ice had to be cut from winter ponds (or mechanically produced), stored centrally until needed, and delivered regularly. In a few exceptional cases, mechanical refrigeration systems had been adapted by the start of the 20th century for use in the homes of the very wealthy, and might be used for cooling both living and food storage areas. One early system was installed at the mansion of Walter Pierce, an oil company executive. Marcel Audiffren of France championed the idea of a refrigerating machine for cooling and preserving foods at home. His U.S. patents, issued in 1895 and 1908, were purchased by the American Audiffren Refrigerating Machine Company. Machines based on Audiffren's sulfur dioxide process were manufactured by General Electric in Fort Wayne, Indiana and marketed by the Johns-Manville company. The first unit was sold in 1911. Audiffren machines were expensive, selling for about $1,000 about twice as much as the cost of an automobile at that time. General Electric sought to develop refrigerators of its own, and in 1915 the first "Guardian" unit was assembled in a back yard wash house as a predecessor to the Frigidaire. In 1916 Kelvinator and Servel introduced two units among a field of competing models. This number increased to 200 by 1920. In 1918, Kelvinator had a model with automatic controls. These home units usually required the installation of the mechanical parts, motor and compressor, in the basement or an adjacent room while the cold box was located in the kitchen. There was a 1922 model that consisted of a wooden cold box, water-cooled compressor, an ice cube tray and a 9 cubic foot compartment for $714. (A 1922 Model-T Ford cost about $450.) In 1923 Frigidaire introduced the first self-contained unit. About this same time porcelain covered metal cabinets began to appear. Ice cube trays were introduced more and more during the 1920s; up to this time freezing was not a function of the modern refrigerator. The first refrigerator to see widespread use was the General Electric "Monitor-Top" refrigerator introduced in 1927. The compressor assembly, which emitted a substantial amount of heat, was placed above the cabinet, and surrounded with a decorative ring. Over 1,000,000 units were produced. As the refrigerating medium, these refrigerators used either sulfur dioxide, which is corrosive to the eyes and may cause loss of vision, painful skin burns and lesions, or methyl formate, which is highly flammable, harmful to the eyes, and toxic if inhaled or ingested. Many of these units are still functional today. These cooling systems cannot be recharged with the hazardous original refrigerants if they leak or break down. The introduction of freon expanded the refrigerator market during the 1930s, and freezer units became more common during the 1940s. Home units did not go into mass production until after WWII. The 1950s and 1960s saw technical advances like automatic defrosting and automatic ice making. Developments of the 1970s and 80s brought about more efficient refrigerators, and environmental issues banned the use of CFC (freon) refrigerants used in sealed systems. Early refrigerator models (1916 and on) featured a cold compartment for ice cube trays. Successful processing of fresh vegetables through freezing began in the late 1920s by the Postum Company (the forerunner of General Foods) which had acquired the technology when it bought the rights to Clarence Birdseye's successful fresh freezing methods. The first successful example of the benefits of frozen foods occurred when General Foods heiress Marjorie Merriweather Post (then wife of Joseph E. Davies, United States Ambassador to the Soviet Union) deployed commercial-grade freezers to Spaso House, the US Embassy in Moscow in advance of the Davies’ arrival. Post, fearful of the food processing safety observed in the USSR, then fully stocked the freezers with products from General Foods' Birdseye unit. The frozen food stores allowed the Davies to lavishly entertain and serve fresh frozen foods that would otherwise be out of season. Upon returning from Moscow, Post (who resumed her maiden name after divorcing Davies) directed General Foods to market frozen product to upscale restaurants. Introduction of home freezer units occurred in the United States in 1940, and frozen foods began to make the transition from luxury to necessity. Design. Refrigerators work by the use of heat pumps operating in a refrigeration cycle. An industrial refrigerator is simply a refrigerator used in an industrial setting, usually in a restaurant or supermarket. It may consist of either a cooling compartment only (a larger refrigerator) or a freezing compartment only (a freezer) or both. The industry sometimes refers to such units as a “cold box” or a “walk-in.” The dual compartment was introduced commercially by General Electric in 1939. The vapor compression cycle is used in most household refrigerators. In this cycle, a circulating refrigerant such as R134a enters the compressor as a low-pressure vapor at its boiling point. The vapor is compressed and exits the compressor as a superheated high-pressure vapor. The superheated vapor travels through part of the condenser which removes the superheat by cooling the vapor. The vapor travels through the remainder of the condenser and is condensed into a liquid at its boiling point. Before the refrigerant leaves the condenser it will have been subcooled (i.e. below its boiling point). The subcooled liquid refrigerant passes through the metering (or throttling) device where its pressure abruptly decreases. The decrease in pressure results in the flash evaporation and auto-refrigeration of a portion of the liquid (typically, less than half of the liquid flashes). The cold and partially vaporized refrigerant travels through the coil or tubes in the evaporator. There, a fan circulates room air across the coil or tubes, and the refrigerant is totally vaporized, extracting heat from the air which is then returned to the food compartment. The refrigerant vapor, now slightly superheated, returns to the compressor inlet to continue the thermodynamic cycle. An absorption refrigerator works differently from a compressor refrigerator, using a source of heat, such as combustion of liquefied petroleum gas, or solar thermal energy. These heat sources are much quieter than the compressor motor in a typical refrigerator. The Peltier effect uses electricity directly to pump heat; refrigerators using this effect are sometimes used for camping, or where noise is not acceptable. They are totally silent, but less energy-efficient than other methods. Other uses of an absorption refrigerator (or "chiller") would include large systems used in office buildings or complexes such as hospitals and universities. These large systems are used to chill a brine solution that is circulated through the building. Other alternatives to the vapor-compression cycle but not in current use include thermionic, vortex tube, air cycle, magnetic cooling, Stirling cycle, Malone refrigeration, acoustic cooling, pulse tube and water cycle systems. Features. Early freezer units accumulated ice crystals around the freezing units. This was a result of humidity introduced into the units when the doors to the freezer were opened. This frost buildup required periodic thawing ("defrosting") of the units to maintain their efficiency. Advances in automatic defrosting eliminating the thawing task were introduced in the 1950s. Also, early units featured freezer compartments located within the larger refrigerator, and accessed by opening the refrigerator door, and then the smaller internal freezer door; units featuring entirely separate freezer compartment were introduced in the early 1960s, becoming the industry standard by the middle of that decade. Later advances included automatic ice units and self compartmentalized freezing units. An increasingly important environmental concern is the disposal of old refrigerators- initially because of the freon coolant damaging the ozone layer, but as the older generation of refrigerators disappears it is the destruction of CFC-bearing insulation which causes concern. Modern refrigerators usually use a refrigerant called HFC-134a (1,2,2,2-tetrafluoroethane), which has no ozone layer depleting properties, in place of freon. Disposal of discarded refrigerators is regulated, often mandating the removal of doors: children playing hide-and-seek have been asphyxiated while hiding inside a discarded refrigerator. This was particularly true for the older models that had latching doors. More modern units use a magnetic door gasket to hold the door sealed but can be pushed open from the inside. This gasket was invented by a man named Herman C. Ells Sr. Who didn't want children to lose their lives. He never gained recognition for his work, being a humble man only wanting to save lives. However, children can be unwittingly harmed by hiding inside any discarded refrigerator. Types of domestic refrigerators. Domestic refrigerators and freezers for food storage are made in a range of sizes. Among the smallest is a 4 L Peltier fridge advertised as being able to hold 6 cans of beer. A large domestic fridge stands as tall as a person and may be about 1 m wide with a capacity of 600 L. Some models for small households fit under kitchen work surfaces, usually about 86 cm high. Fridges may be combined with freezers, either stacked with fridge or freezer above, below, or side by side. A fridge without a true freezer may have a small compartment to make ice. Freezers may have drawers to store food in, or they may have no divisions (chest freezers). Fridges and freezers may be free-standing, or built into a kitchen. Refrigeration units for commercial and industrial applications can be made any size, shape or style to fit customer needs. Energy efficiency. An auto-defrost unit uses a blower fan to keep moisture out of the unit. It also has a heating coil beneath the evaporator that periodically heats the freezer compartment and melts any ice buildup. Some units also have heaters in the side of the door to keep the unit from "weeping." Manual defrost units are available in used-appliance shops or by special order. Refrigerators used to consume more energy than any other home appliance, but in the last twenty years great strides have been made to make refrigerators more energy efficient. In the early 1990s a competition was held among the major manufacturers to encourage energy efficiency. Current models that are Energy Star qualified use 50 percent less energy than models made before 1993. The most energy-efficient unit made in the US is designed to run on 12 or 110 volts, and consumes about half a kilowatt-hour per day. But even ordinary units are quite efficient; some smaller units use little more than one kilowatt-hour per day. Larger units, especially those with large freezers and icemakers, may use as much as 4 kWh per day. Among the different styles of refrigerators, top-freezer models are more efficient than bottom-freezer models of the same capacity, which are in turn more efficient than side-freezer models. Models with through-the-door ice units are less efficient than those without. Dr. Tom Chalko in Australia has developed an external thermostat to convert any chest freezer into a chest fridge using only about 0.1kWh per day--the amount of energy used by a 100 watt light bulb in one hour. Scientists at Oxford University have reconstructed a refrigerator invented in 1930 by Albert Einstein in their efforts to replace current technologies with energy efficient green technology. The Einstein refrigerator operates without electricity and uses no moving parts or greenhouse gases. Impact on lifestyle. The invention of the refrigerator has allowed the modern family to purchase, store, freeze, prepare and preserve food products in a fresh state for much longer periods of time than was previously possible. For the majority of families without a sizeable garden in which to grow vegetables and raise animals, the advent of the refrigerator along with the modern supermarket led to a vastly more varied diet and improved health resulting from improved nutrition. Dairy products, meats, fish, poultry and vegetables can be kept refrigerated in the same space within the kitchen (although raw meat should be kept separate from other foodstuffs for reasons of hygiene). The refrigerator allows families to consume more salads, fresh fruits and vegetables during meals without having to own a garden or an orchard. Exotic foodstuffs from far-off countries that have been imported by means of refrigeration can be enjoyed in the home because of the availability of domestic refrigeration. The luxury of freezing allows households to purchase more foods in bulk that can be eaten at leisure while the bulk purchase provides cost savings (see economies of scale). Ice cream, a popular commodity of the 20th century, was previously only available by traveling long distances to where the product was made fresh and had to be eaten on the spot. Now it is a common food item. Ice on-demand not only adds to the enjoyment of cold drinks, but is useful in first-aid applications, not to mention cold packs that can be kept frozen for picnics or in case of emergency. Temperature zones and ratings. Some refrigerators are now divided into four zones to store different types of food: The capacity of a refrigerator is measured in either litres or cubic feet (US). Typically the volume of a combined fridge-freezer is split to 100 litres (3.53 cubic feet) for the freezer and 140 litres (4.94 cubic feet) for the refrigerator, although these values are highly variable. Temperature settings for refrigerator and freezer compartments are often given arbitrary numbers (for example, 1 through 9, warmest to coldest) by manufacturers, but generally 2 to 8 °C (36 to 46 °F) is ideal for the refrigerator compartment and -18 °C (0 °F) for the freezer. Some refrigerators require a certain external temperature (60 °F) to run properly. This can be an issue when placing a refrigerator in an unfinished area such as a garage. European freezers, and refrigerators with a freezer compartment, have a four star rating system to grade freezers. Although both the three and four star ratings specify the same minimum temperature of -18°C, only a four star freezer is intended to be used for freezing fresh food. Three (or fewer) stars are used for frozen food compartments which are only suitable for storing frozen food; introducing fresh food into such a compartment is likely to result in unacceptable temperature rises.