ratio of word probabilities predicted from brain for desk and refrigerator

close this window

desk

refrigerator

top 10 words in brain distribution (in article):
build wood store design wall structure type size home surface
top 10 words in brain distribution (in article):
century cut time modern design metal type allow style hold
top 10 words in brain distribution (not in article):
city material house paint floor street town state construction window
top 10 words in brain distribution (not in article):
wear horse church iron blade head steel woman bishop handle
times more probable under desk 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under refrigerator
(words not in the model)
A desk'" is a furniture form and a class of table often used in a work or office setting for reading or writing on or using a computer. Desks often have one or more drawers to store office supplies and papers. Unlike a regular table, usually only one side of a desk is suitable to sit on (though there are some unusual exceptions, such as a partners desk). Not all desks have the form of a table. For instance, an Armoire desk is a desk built within a large wardrobe-like cabinet, and a portable desk is light enough to be placed on a person's lap. Early desks. Desk-style furniture appears not to have been used in classical antiquity or in other ancient centers of civilization in the Middle East or Far East, but there is no specific proof. Medieval illustrations show the first pieces of furniture which seem to have been designed and constructed for reading and writing. Before the invention of the movable type printing press in the 15th century, any reader was potentially a writer or publisher or both, since any book or other document had to be copied by hand. The desks were designed with slots and hooks for bookmarks and for writing implements. Since manuscript volumes were sometimes large, and heavy, desks of the period usually had massive structures. Desks of the Renaissance and later eras had relatively slimmer structures, and more and more drawers as woodworking became more precise and cabinet-making became a distinct trade. It is often possible to find out if a table or other piece of furniture of those times was designed to be used as a desk by looking for a drawer with three small separations (one each for the ink pot, the blotter and the powder tray) and room for the pens. The desk forms we are familiar with in this beginning of the millennium were born mostly in the 17th and 18th centuries. The ergonomic desk of the last decades is the newest addition to a long list of desk forms, but in a way it is only a refinement of the mechanically complex drawing table or drafting table of the end of the 18th century. Industrial era. Refinements to those first desk forms were considerable through the 19th century, as steam-driven machinery made cheap wood-based paper possible in the last periods of the first phase of the industrial revolution. This produced a boom in the number of, or some might say the birth of, the white-collar worker. As these office workers grew in number, desks were mass-produced for them in large quantities, using newer, steam-driven woodworking machinery. This was the first sharp division in desk manufacturing. From then on, limited quantities of finely crafted desks have been constructed by master cabinetmakers for the homes and offices of the rich while the vast majority of desks were assembled rapidly by unskilled labor, from components turned out in batches by machine tools. Thus, age alone does not guarantee that an antique desk is a masterpiece, since this shift took place more than a hundred years ago. More paper and more correspondence drove the need for more complex desks and more specialized desks, such as the rolltop desk which was a mass produced, slatted variant of the classical cylinder desk. It provided a relatively fast and cheap way to lock up the ever increasing flow of paper without having to file everything by the end of the day. Paper documents started leaving the desk as a "home," with the general introduction of filing cabinets. Correspondence and other documents were now too numerous to get enough attention to be rolled up or folded again, then summarized and tagged before being pigeonholed in a small compartment over or under the work surface of the desk. The famous Wooton desk and others were the last manifestations of the "pigeonhole" style. The newer desks could be transformed into many different shapes and angles and were ideal for artists. Steel desks. A smaller boom in office work and desk production occurred at the end of the 19th century and the beginning of the 20th with the introduction of smaller and cheaper electrical presses and efficient carbon papers coupled with the general acceptance of the typewriter. Steel desks were introduced to take heavier loads of paper and withstand the pounding meted out on the typewriters. The L-shaped desk became popular, with the "leg" being used as an annex for the typewriter. Another big boom occurred after the Second World War with the spread of photocopying. Paperwork drove even higher the number of desk workers, whose work surface diminished in size as office rents rose, and the paper itself was moved more and more directly to filing cabinets or sent to records management centers, or transformed into microfilm, or both. Modular desks seating several co-workers close by became common. Even executive or management desks became mass-produced, built of cheap plywood or fiberboard covered with wood veneer, as the number of persons managing the white collar workers became even greater. Student desks. A "'student desk'" can be any desk form meant for use by a student. Usually the term designates a small pedestal desk or writing table constructed for use by a teenager or a pre-teen in his or her room at home. More often than not it is a pedestal desk, with only one of the two pedestals and about two thirds of the desk surface. Such desks are sometimes called left pedestal desks or right pedestal desks depending on the position of the single pedestal. The height of the desk is usually a bit lower than is the case for normal adult desks. In some cases, the desk is connected from the seat to the table. The table is also used for sitting before classes. The desks are usually mass-produced in steel or wood and sold on the consumer market. In addition there is a wide variety of plans available for woodworking enthusiasts. There are many novel forms of student desks made to maximize the relatively restricted area available in a child's room. One of the most common is the bunk bed desk, also known as a loft bed. Impact of computers. Until the late 1980s desks remained a place for paperwork and business negotiation. At the end of this decade though the personal computer was taking hold in large and medium sized businesses. New office suites included a "knee hole" credenza which was a place for a terminal or personal computer and keyboard tray. Soon new office designs also included "U-shape" suites which added a bridge worksurface between the back credenza and front desk. During the North American recession of the early 1990s, many manager and executive workers had to do word processing and other functions previously completed by typing pools and secretaries. This necessitated a more central placement of the computer on these "U-shape" suite desk systems. With computers abounding, "computer paper" became an office staple. The beginning of this paper boom gave birth to the dream of the "paperless office", in which all information would appear on computer monitors. However, the ease of printing personal documents and the lack of comfort with reading text on computer monitors led to a great deal of document printing. The need for paperwork space vied with the rising desk space taken up by computer monitors, CPUs, printers, scanners, and other peripherals. As well, the need for more space led some desk companies to attach some items to the modesty panel at the back of the desk, such as multi-outlets and cabling. Through the "tech boom" of the 1990s, office worker numbers skyrocketed along with the cost of office space rent. The cubicle desk became widely accepted in North America as an economical way of putting more desk workers in the same space without actually shrinking the size of their working surfaces. The cubicle walls have become new place for workers to affix papers and other items once left on the horizontal desktop surface. Even computer monitor frames themselves are used to attach reminder notes and business cards. Early in the 2000s, private office workers found that their side and back computer-placing furniture made it hard to show the contents of a computer screen to guests or co-workers. Manufacturers have responded to this issue by creating "Forward Facing" desks where computer monitors are placed on the front of the "U-shape" workstation. This forward computer monitor placement promotes a clearer sight-line to greet colleagues, increases computer screen privacy and allows for common viewing of information displayed on a screen. References. Articles and books on real and virtual desks and things in between: A refrigerator'" (often called a "'fridge'" for short) is a cooling appliance comprising a thermally insulated compartment and a heat pump: a mechanism to transfer heat from it to the external environment, cooling the contents to a temperature below ambient. Refrigerators are extensively used to store foods which deteriorate at ambient temperatures; spoilage from bacterial growth and other processes is much slower at low temperatures. A device described as a "refrigerator" maintains a temperature a few degrees above the freezing point of water; a similar device which maintains a temperature below the freezing point of water is called a "'freezer'". The refrigerator is a relatively modern invention among kitchen appliances. It replaced the icebox, which had been a common household appliance for almost a century and a half prior. For this reason, a refrigerator is sometimes referred to as an "icebox". Freezers keep their contents frozen. They are used both in households and for commercial use. Most freezers operate around minus 18 °C (0 °F). Domestic freezers can be included as a compartment in a refrigerator, sharing the same mechanism or with a separate mechanism, or can be standalone units. Domestic freezers are generally upright units, resembling refrigerators, or chests, resembling upright units laid on their backs. Many modern freezers come with an icemaker. Commercial fridge and freezer units, which go by many other names, were in use for almost 40 years prior to the common home models. They used toxic ammonia gas systems, making them unsafe for home use. Practical household refrigerators were introduced in 1915 and gained wider acceptance in the United States in the 1930s as prices fell and non-toxic, non-flammable synthetic refrigerants such as Freon or R-12 were introduced. It is notable that while 60% of households in the US owned a refrigerator by the 1930s, it was not until 40 years later, in the 1970s, that the refrigerator achieved a similar level of penetration in the United Kingdom. History. Before the invention of the refrigerator, icehouses were used to provide cool storage for most of the year. Placed near freshwater lakes or packed with snow and ice during the winter, they were once very common. Using the environment to cool foodstuffs is still common today. On mountainsides, runoff from melting snow higher up is a convenient way to cool drinks, and during the winter months simply placing milk outside is sufficient to greatly extend its useful life. In the 11th century, the Persian physicist and chemist, Ibn Sina (Avicenna), invented the refrigerated coil, which condenses aromatic vapours. This was a breakthrough in distillation technology and he made use of it in his steam distillation process, which requires refrigerated tubing, to produce essential oils. The first known artificial refrigeration was demonstrated by William Cullen at the University of Glasgow in 1748. Between 1805, when Oliver Evans designed the first refrigeration machine that used vapor instead of liquid, and 1902 when Willis Haviland Carrier demonstrated the first air conditioner, scores of inventors contributed many small advances in cooling machinery. In 1850 or 1851, Dr. John Gorrie demonstrated an ice maker. In 1857, Australian James Harrison introduced vapor-compression refrigeration to the brewing and meat packing industries. Ferdinand Carré of France developed a somewhat more complex system in 1859. Unlike earlier compression-compression machines, which used air as a coolant, Carré's equipment contained rapidly expanding ammonia. The absorption refrigerator was invented by Baltzar von Platen and Carl Munters in 1922, while they were still students at the Royal Institute of Technology in Stockholm, Sweden. It became a worldwide success and was commercialized by Electrolux. Other pioneers included Charles Tellier, David Boyle, and Raoul Pictet. At the start of the 20th Century, about half of households in the United States relied on melting ice (in an icebox) to keep food cold, while the remaining half had no cooled storage at all. The ice used for household storage was expensive because ice had to be cut from winter ponds (or mechanically produced), stored centrally until needed, and delivered regularly. In a few exceptional cases, mechanical refrigeration systems had been adapted by the start of the 20th century for use in the homes of the very wealthy, and might be used for cooling both living and food storage areas. One early system was installed at the mansion of Walter Pierce, an oil company executive. Marcel Audiffren of France championed the idea of a refrigerating machine for cooling and preserving foods at home. His U.S. patents, issued in 1895 and 1908, were purchased by the American Audiffren Refrigerating Machine Company. Machines based on Audiffren's sulfur dioxide process were manufactured by General Electric in Fort Wayne, Indiana and marketed by the Johns-Manville company. The first unit was sold in 1911. Audiffren machines were expensive, selling for about $1,000 about twice as much as the cost of an automobile at that time. General Electric sought to develop refrigerators of its own, and in 1915 the first "Guardian" unit was assembled in a back yard wash house as a predecessor to the Frigidaire. In 1916 Kelvinator and Servel introduced two units among a field of competing models. This number increased to 200 by 1920. In 1918, Kelvinator had a model with automatic controls. These home units usually required the installation of the mechanical parts, motor and compressor, in the basement or an adjacent room while the cold box was located in the kitchen. There was a 1922 model that consisted of a wooden cold box, water-cooled compressor, an ice cube tray and a 9 cubic foot compartment for $714. (A 1922 Model-T Ford cost about $450.) In 1923 Frigidaire introduced the first self-contained unit. About this same time porcelain covered metal cabinets began to appear. Ice cube trays were introduced more and more during the 1920s; up to this time freezing was not a function of the modern refrigerator. The first refrigerator to see widespread use was the General Electric "Monitor-Top" refrigerator introduced in 1927. The compressor assembly, which emitted a substantial amount of heat, was placed above the cabinet, and surrounded with a decorative ring. Over 1,000,000 units were produced. As the refrigerating medium, these refrigerators used either sulfur dioxide, which is corrosive to the eyes and may cause loss of vision, painful skin burns and lesions, or methyl formate, which is highly flammable, harmful to the eyes, and toxic if inhaled or ingested. Many of these units are still functional today. These cooling systems cannot be recharged with the hazardous original refrigerants if they leak or break down. The introduction of freon expanded the refrigerator market during the 1930s, and freezer units became more common during the 1940s. Home units did not go into mass production until after WWII. The 1950s and 1960s saw technical advances like automatic defrosting and automatic ice making. Developments of the 1970s and 80s brought about more efficient refrigerators, and environmental issues banned the use of CFC (freon) refrigerants used in sealed systems. Early refrigerator models (1916 and on) featured a cold compartment for ice cube trays. Successful processing of fresh vegetables through freezing began in the late 1920s by the Postum Company (the forerunner of General Foods) which had acquired the technology when it bought the rights to Clarence Birdseye's successful fresh freezing methods. The first successful example of the benefits of frozen foods occurred when General Foods heiress Marjorie Merriweather Post (then wife of Joseph E. Davies, United States Ambassador to the Soviet Union) deployed commercial-grade freezers to Spaso House, the US Embassy in Moscow in advance of the Davies’ arrival. Post, fearful of the food processing safety observed in the USSR, then fully stocked the freezers with products from General Foods' Birdseye unit. The frozen food stores allowed the Davies to lavishly entertain and serve fresh frozen foods that would otherwise be out of season. Upon returning from Moscow, Post (who resumed her maiden name after divorcing Davies) directed General Foods to market frozen product to upscale restaurants. Introduction of home freezer units occurred in the United States in 1940, and frozen foods began to make the transition from luxury to necessity. Design. Refrigerators work by the use of heat pumps operating in a refrigeration cycle. An industrial refrigerator is simply a refrigerator used in an industrial setting, usually in a restaurant or supermarket. It may consist of either a cooling compartment only (a larger refrigerator) or a freezing compartment only (a freezer) or both. The industry sometimes refers to such units as a “cold box” or a “walk-in.” The dual compartment was introduced commercially by General Electric in 1939. The vapor compression cycle is used in most household refrigerators. In this cycle, a circulating refrigerant such as R134a enters the compressor as a low-pressure vapor at its boiling point. The vapor is compressed and exits the compressor as a superheated high-pressure vapor. The superheated vapor travels through part of the condenser which removes the superheat by cooling the vapor. The vapor travels through the remainder of the condenser and is condensed into a liquid at its boiling point. Before the refrigerant leaves the condenser it will have been subcooled (i.e. below its boiling point). The subcooled liquid refrigerant passes through the metering (or throttling) device where its pressure abruptly decreases. The decrease in pressure results in the flash evaporation and auto-refrigeration of a portion of the liquid (typically, less than half of the liquid flashes). The cold and partially vaporized refrigerant travels through the coil or tubes in the evaporator. There, a fan circulates room air across the coil or tubes, and the refrigerant is totally vaporized, extracting heat from the air which is then returned to the food compartment. The refrigerant vapor, now slightly superheated, returns to the compressor inlet to continue the thermodynamic cycle. An absorption refrigerator works differently from a compressor refrigerator, using a source of heat, such as combustion of liquefied petroleum gas, or solar thermal energy. These heat sources are much quieter than the compressor motor in a typical refrigerator. The Peltier effect uses electricity directly to pump heat; refrigerators using this effect are sometimes used for camping, or where noise is not acceptable. They are totally silent, but less energy-efficient than other methods. Other uses of an absorption refrigerator (or "chiller") would include large systems used in office buildings or complexes such as hospitals and universities. These large systems are used to chill a brine solution that is circulated through the building. Other alternatives to the vapor-compression cycle but not in current use include thermionic, vortex tube, air cycle, magnetic cooling, Stirling cycle, Malone refrigeration, acoustic cooling, pulse tube and water cycle systems. Features. Early freezer units accumulated ice crystals around the freezing units. This was a result of humidity introduced into the units when the doors to the freezer were opened. This frost buildup required periodic thawing ("defrosting") of the units to maintain their efficiency. Advances in automatic defrosting eliminating the thawing task were introduced in the 1950s. Also, early units featured freezer compartments located within the larger refrigerator, and accessed by opening the refrigerator door, and then the smaller internal freezer door; units featuring entirely separate freezer compartment were introduced in the early 1960s, becoming the industry standard by the middle of that decade. Later advances included automatic ice units and self compartmentalized freezing units. An increasingly important environmental concern is the disposal of old refrigerators- initially because of the freon coolant damaging the ozone layer, but as the older generation of refrigerators disappears it is the destruction of CFC-bearing insulation which causes concern. Modern refrigerators usually use a refrigerant called HFC-134a (1,2,2,2-tetrafluoroethane), which has no ozone layer depleting properties, in place of freon. Disposal of discarded refrigerators is regulated, often mandating the removal of doors: children playing hide-and-seek have been asphyxiated while hiding inside a discarded refrigerator. This was particularly true for the older models that had latching doors. More modern units use a magnetic door gasket to hold the door sealed but can be pushed open from the inside. This gasket was invented by a man named Herman C. Ells Sr. Who didn't want children to lose their lives. He never gained recognition for his work, being a humble man only wanting to save lives. However, children can be unwittingly harmed by hiding inside any discarded refrigerator. Types of domestic refrigerators. Domestic refrigerators and freezers for food storage are made in a range of sizes. Among the smallest is a 4 L Peltier fridge advertised as being able to hold 6 cans of beer. A large domestic fridge stands as tall as a person and may be about 1 m wide with a capacity of 600 L. Some models for small households fit under kitchen work surfaces, usually about 86 cm high. Fridges may be combined with freezers, either stacked with fridge or freezer above, below, or side by side. A fridge without a true freezer may have a small compartment to make ice. Freezers may have drawers to store food in, or they may have no divisions (chest freezers). Fridges and freezers may be free-standing, or built into a kitchen. Refrigeration units for commercial and industrial applications can be made any size, shape or style to fit customer needs. Energy efficiency. An auto-defrost unit uses a blower fan to keep moisture out of the unit. It also has a heating coil beneath the evaporator that periodically heats the freezer compartment and melts any ice buildup. Some units also have heaters in the side of the door to keep the unit from "weeping." Manual defrost units are available in used-appliance shops or by special order. Refrigerators used to consume more energy than any other home appliance, but in the last twenty years great strides have been made to make refrigerators more energy efficient. In the early 1990s a competition was held among the major manufacturers to encourage energy efficiency. Current models that are Energy Star qualified use 50 percent less energy than models made before 1993. The most energy-efficient unit made in the US is designed to run on 12 or 110 volts, and consumes about half a kilowatt-hour per day. But even ordinary units are quite efficient; some smaller units use little more than one kilowatt-hour per day. Larger units, especially those with large freezers and icemakers, may use as much as 4 kWh per day. Among the different styles of refrigerators, top-freezer models are more efficient than bottom-freezer models of the same capacity, which are in turn more efficient than side-freezer models. Models with through-the-door ice units are less efficient than those without. Dr. Tom Chalko in Australia has developed an external thermostat to convert any chest freezer into a chest fridge using only about 0.1kWh per day--the amount of energy used by a 100 watt light bulb in one hour. Scientists at Oxford University have reconstructed a refrigerator invented in 1930 by Albert Einstein in their efforts to replace current technologies with energy efficient green technology. The Einstein refrigerator operates without electricity and uses no moving parts or greenhouse gases. Impact on lifestyle. The invention of the refrigerator has allowed the modern family to purchase, store, freeze, prepare and preserve food products in a fresh state for much longer periods of time than was previously possible. For the majority of families without a sizeable garden in which to grow vegetables and raise animals, the advent of the refrigerator along with the modern supermarket led to a vastly more varied diet and improved health resulting from improved nutrition. Dairy products, meats, fish, poultry and vegetables can be kept refrigerated in the same space within the kitchen (although raw meat should be kept separate from other foodstuffs for reasons of hygiene). The refrigerator allows families to consume more salads, fresh fruits and vegetables during meals without having to own a garden or an orchard. Exotic foodstuffs from far-off countries that have been imported by means of refrigeration can be enjoyed in the home because of the availability of domestic refrigeration. The luxury of freezing allows households to purchase more foods in bulk that can be eaten at leisure while the bulk purchase provides cost savings (see economies of scale). Ice cream, a popular commodity of the 20th century, was previously only available by traveling long distances to where the product was made fresh and had to be eaten on the spot. Now it is a common food item. Ice on-demand not only adds to the enjoyment of cold drinks, but is useful in first-aid applications, not to mention cold packs that can be kept frozen for picnics or in case of emergency. Temperature zones and ratings. Some refrigerators are now divided into four zones to store different types of food: The capacity of a refrigerator is measured in either litres or cubic feet (US). Typically the volume of a combined fridge-freezer is split to 100 litres (3.53 cubic feet) for the freezer and 140 litres (4.94 cubic feet) for the refrigerator, although these values are highly variable. Temperature settings for refrigerator and freezer compartments are often given arbitrary numbers (for example, 1 through 9, warmest to coldest) by manufacturers, but generally 2 to 8 °C (36 to 46 °F) is ideal for the refrigerator compartment and -18 °C (0 °F) for the freezer. Some refrigerators require a certain external temperature (60 °F) to run properly. This can be an issue when placing a refrigerator in an unfinished area such as a garage. European freezers, and refrigerators with a freezer compartment, have a four star rating system to grade freezers. Although both the three and four star ratings specify the same minimum temperature of -18°C, only a four star freezer is intended to be used for freezing fresh food. Three (or fewer) stars are used for frozen food compartments which are only suitable for storing frozen food; introducing fresh food into such a compartment is likely to result in unacceptable temperature rises.