ratio of word probabilities predicted from brain for desk and hammer

close this window

desk

hammer

top 10 words in brain distribution (in article):
build wood store design wall home structure type size provide
top 10 words in brain distribution (in article):
muscle form energy power produce human bone time structure animal
top 10 words in brain distribution (not in article):
city material house street town floor paint state construction Unite
top 10 words in brain distribution (not in article):
cell church fuel vehicle engine body gas wheel car brain
times more probable under desk 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under hammer
(words not in the model)
A desk'" is a furniture form and a class of table often used in a work or office setting for reading or writing on or using a computer. Desks often have one or more drawers to store office supplies and papers. Unlike a regular table, usually only one side of a desk is suitable to sit on (though there are some unusual exceptions, such as a partners desk). Not all desks have the form of a table. For instance, an Armoire desk is a desk built within a large wardrobe-like cabinet, and a portable desk is light enough to be placed on a person's lap. Early desks. Desk-style furniture appears not to have been used in classical antiquity or in other ancient centers of civilization in the Middle East or Far East, but there is no specific proof. Medieval illustrations show the first pieces of furniture which seem to have been designed and constructed for reading and writing. Before the invention of the movable type printing press in the 15th century, any reader was potentially a writer or publisher or both, since any book or other document had to be copied by hand. The desks were designed with slots and hooks for bookmarks and for writing implements. Since manuscript volumes were sometimes large, and heavy, desks of the period usually had massive structures. Desks of the Renaissance and later eras had relatively slimmer structures, and more and more drawers as woodworking became more precise and cabinet-making became a distinct trade. It is often possible to find out if a table or other piece of furniture of those times was designed to be used as a desk by looking for a drawer with three small separations (one each for the ink pot, the blotter and the powder tray) and room for the pens. The desk forms we are familiar with in this beginning of the millennium were born mostly in the 17th and 18th centuries. The ergonomic desk of the last decades is the newest addition to a long list of desk forms, but in a way it is only a refinement of the mechanically complex drawing table or drafting table of the end of the 18th century. Industrial era. Refinements to those first desk forms were considerable through the 19th century, as steam-driven machinery made cheap wood-based paper possible in the last periods of the first phase of the industrial revolution. This produced a boom in the number of, or some might say the birth of, the white-collar worker. As these office workers grew in number, desks were mass-produced for them in large quantities, using newer, steam-driven woodworking machinery. This was the first sharp division in desk manufacturing. From then on, limited quantities of finely crafted desks have been constructed by master cabinetmakers for the homes and offices of the rich while the vast majority of desks were assembled rapidly by unskilled labor, from components turned out in batches by machine tools. Thus, age alone does not guarantee that an antique desk is a masterpiece, since this shift took place more than a hundred years ago. More paper and more correspondence drove the need for more complex desks and more specialized desks, such as the rolltop desk which was a mass produced, slatted variant of the classical cylinder desk. It provided a relatively fast and cheap way to lock up the ever increasing flow of paper without having to file everything by the end of the day. Paper documents started leaving the desk as a "home," with the general introduction of filing cabinets. Correspondence and other documents were now too numerous to get enough attention to be rolled up or folded again, then summarized and tagged before being pigeonholed in a small compartment over or under the work surface of the desk. The famous Wooton desk and others were the last manifestations of the "pigeonhole" style. The newer desks could be transformed into many different shapes and angles and were ideal for artists. Steel desks. A smaller boom in office work and desk production occurred at the end of the 19th century and the beginning of the 20th with the introduction of smaller and cheaper electrical presses and efficient carbon papers coupled with the general acceptance of the typewriter. Steel desks were introduced to take heavier loads of paper and withstand the pounding meted out on the typewriters. The L-shaped desk became popular, with the "leg" being used as an annex for the typewriter. Another big boom occurred after the Second World War with the spread of photocopying. Paperwork drove even higher the number of desk workers, whose work surface diminished in size as office rents rose, and the paper itself was moved more and more directly to filing cabinets or sent to records management centers, or transformed into microfilm, or both. Modular desks seating several co-workers close by became common. Even executive or management desks became mass-produced, built of cheap plywood or fiberboard covered with wood veneer, as the number of persons managing the white collar workers became even greater. Student desks. A "'student desk'" can be any desk form meant for use by a student. Usually the term designates a small pedestal desk or writing table constructed for use by a teenager or a pre-teen in his or her room at home. More often than not it is a pedestal desk, with only one of the two pedestals and about two thirds of the desk surface. Such desks are sometimes called left pedestal desks or right pedestal desks depending on the position of the single pedestal. The height of the desk is usually a bit lower than is the case for normal adult desks. In some cases, the desk is connected from the seat to the table. The table is also used for sitting before classes. The desks are usually mass-produced in steel or wood and sold on the consumer market. In addition there is a wide variety of plans available for woodworking enthusiasts. There are many novel forms of student desks made to maximize the relatively restricted area available in a child's room. One of the most common is the bunk bed desk, also known as a loft bed. Impact of computers. Until the late 1980s desks remained a place for paperwork and business negotiation. At the end of this decade though the personal computer was taking hold in large and medium sized businesses. New office suites included a "knee hole" credenza which was a place for a terminal or personal computer and keyboard tray. Soon new office designs also included "U-shape" suites which added a bridge worksurface between the back credenza and front desk. During the North American recession of the early 1990s, many manager and executive workers had to do word processing and other functions previously completed by typing pools and secretaries. This necessitated a more central placement of the computer on these "U-shape" suite desk systems. With computers abounding, "computer paper" became an office staple. The beginning of this paper boom gave birth A hammer'" is a tool meant to deliver an impact to an object. The most common uses are for driving nails, fitting parts, and breaking up objects. Hammers are often designed for a specific purpose, and vary widely in their shape and structure. Usual features are a handle and a head, with most of the weight in the head. The basic design is hand-operated, but there are also many mechanically operated models for heavier uses. The hammer is a basic tool of many professions, and can also be used as a weapon. By analogy, the name "'hammer'" has also been used for devices that are designed to deliver blows, e.g. in the caplock mechanism of firearms. History. The use of simple tools dates to about 2,400,000 BCE when various shaped stones were used to strike wood, bone, or other stones to break them apart and shape them. Stones attached to sticks with strips of leather or animal sinew were being used as hammers by about 30,000 BCE during the middle of the Paleolithic Stone Age. Its archeological record means it is perhaps the oldest human tool known. Designs and variations. The essential part of a hammer is the head, a compact solid mass that is able to deliver the blow to the intended target without itself deforming. The opposite side of a ball as in the ball-peen hammer and the cow hammer. Some upholstery hammers have a magnetized appendage, to pick up tacks. In the hatchet the hammer head is secondary to the cutting edge of the tool. In recent years the handles have been made of durable plastic or rubber. The hammer varies at the top, some are larger than others giving a larger surface area to hit different sized nails and such, Mechanically-powered hammers often look quite different from the hand tools, but nevertheless most of them work on the same principle. They include: In professional framing carpentry, the hammer has almost been completely replaced by the nail gun. In professional upholstery, its chief competitor is the staple gun. Hammer as a force amplifier. A hammer is basically a force amplifier that works by converting mechanical work into kinetic energy and back. In the swing that precedes each blow, a certain amount of kinetic energy gets stored in the hammer's head, equal to the length "D" of the swing times the force "f" produced by the muscles of the arm and by gravity. When the hammer strikes, the head gets stopped by an opposite force coming from the target; which is equal and opposite to the force applied by the head to the target. If the target is a hard and heavy object, or if it is resting on some sort of anvil, the head can travel only a very short distance "d" before stopping. Since the stopping force "F" times that distance must be equal to the head's kinetic energy, it follows that "F" will be much greater than the original driving force "f" roughly, by a factor "D" "d". In this way, great strength is not needed to produce a force strong enough to bend steel, or crack the hardest stone. Effect of the head's mass. The amount of energy delivered to the target by the hammer-blow is equivalent to one half the mass of the head times the square of the head's speed at the time of impact ([Formula 1]). While the energy delivered to the target increases linearly with mass, it increases geometrically with the speed (see the effect of the handle, below). High tech titanium heads are lighter and allow for longer handles, thus increasing velocity and delivering more energy with less arm fatigue than that of a steel head hammer of the same weight. As hammers must be used in many circumstances, where the position of the person using them cannot be taken for granted, trade-offs are made for the sake of practicality. In areas where one has plenty of room, a long handle with a heavy head (like a sledge hammer) can deliver the maximum amount of energy to the target. But clearly, it's unreasonable to use a sledge hammer to drive upholstery tacks. Thus, the overall design has been modified repeatedly to achieve the optimum utility in a wide variety of situations. Effect of the handle. The handle of the hammer helps in several ways. It keeps the user's hands away from the point of impact. It provides a broad area that is better-suited for gripping by the hand. Most importantly, it allows the user to maximize the speed of the head on each blow. The primary constraint on additional handle length is the lack of space in which to swing the hammer. This is why sledge hammers, largely used in open spaces, can have handles that are much longer than a standard carpenter's hammer. The second most important constraint is more subtle. Even without considering the effects of fatigue, the longer the handle, the harder it is to guide the head of the hammer to its target at full speed. Most designs are a compromise between practicality and energy efficiency. Too long a handle: the hammer is inefficient because it delivers force to the wrong place, off-target. Too short a handle: the hammer is inefficient because it doesn't deliver enough force, requiring more blows to complete a given task. Recently, modifications have also been made with respect to the effect of the hammer on the user. A titanium head has about 3% recoil and can result in greater efficiency and less fatigue when compared to a steel head with about 27% recoil. Handles made of shock-absorbing materials or varying angles attempt to make it easier for the user to continue to wield this age-old device, even as nail guns and other powered drivers encroach on its traditional field of use. War hammers. The concept of putting a handle on a weight to make it more convenient to use may well have led to the very first weapons ever invented. The club is basically a variant of a hammer. In the Middle Ages, the war hammer became popular when edged weapons could no longer easily penetrate some forms of armour. Symbolic hammers. The hammer, being one of the most used tools by "Homo sapiens", has been used very much in symbols and arms. In the Middle Ages it was used often in blacksmith guild logos, as well as in many family symbols. The most recognised symbol with a hammer in it is the Hammer and Sickle, which was the symbol of the former Soviet Union. The hammer in this symbol represents the industrial working class (and the sickle the agricultural working class). The hammer is used in some coat of arms in (former) socialist countries like East Germany. In Norse Mythology, Thor, the god of thunder and lightning, wields a hammer named Mjolnir. Many artifacts of decorative hammers have been found leading many modern practitioners of this religion to often wear reproductions as a sign of their faith.