ratio of word probabilities predicted from brain for cow and car

close this window

cow

car

top 10 words in brain distribution (in article):
species animal head handle size form metal female common male
top 10 words in brain distribution (in article):
animal city cell human people form species build body world
top 10 words in brain distribution (not in article):
iron blade bird steel egg hair cut body fish tool
top 10 words in brain distribution (not in article):
love sexual god male female woman house culture live street
times more probable under cow 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under car
(words not in the model)
Cattle'", colloquially referred to as "'cows'", are domesticated ungulates, a member of the subfamily Bovinae of the family Bovidae. They are raised as livestock for meat (called beef and veal), dairy products (milk), leather and as draft animals (pulling carts, plows and the like). In some countries, such as India, they are honored in religious ceremonies and revered. It is estimated that there are 1.3 billion cattle in the world today. Species of cattle. Cattle were originally identified by Carolus Linnaeus as three separate species. These were "Bos taurus", the European cattle, including similar types from Africa and Asia; "Bos indicus", the zebu; and the extinct "Bos primigenius", the aurochs. The aurochs is ancestral to both zebu and European cattle. More recently these three have increasingly been grouped as one species, with "Bos primigenius taurus", "Bos primigenius indicus" and "Bos primigenius primigenius" as the subspecies. Complicating the matter is the ability of cattle to interbreed with other closely related species. Hybrid individuals and even breeds exist, not only between European cattle and zebu but also with yaks (called a dzo), banteng, gaur, and bison ("cattalo"), a cross-genera hybrid. For example, genetic testing of the Dwarf Lulu breed, the only humpless "Bos taurus"-type" cattle in Nepal, found them to be a mix of European cattle, zebu and yak. Cattle cannot successfully be bred with water buffalo or African buffalo. The aurochs originally ranged throughout Europe, North Africa, and much of Asia. In historical times, their range was restricted to Europe, and the last animals were killed by poachers in Masovia, Poland, in 1627. Breeders have attempted to recreate cattle of similar appearance to aurochs by crossing of domesticated cattle breeds, creating the Heck cattle breed. (See also aurochs and zebu articles.) Word origin. "Cattle" did not originate as a name for bovine animals. It derives from the Latin "caput", head, and originally meant movable property, especially livestock of any kind. The word is closely related to "chattel" (a unit of personal property) and "capital" in the economic sense. Older English sources like King James Version of the Bible refer to livestock in general as cattle (as opposed to the word deer which then was used for wild animals). Additionally other species of the genus "Bos" are sometimes called wild cattle. Today, the modern meaning of "cattle", without any other qualifier, is usually restricted to domesticated bovines. Terminology of cattle. In general, the same words are used in different parts of the world but with minor differences in the definitions. The terminology described here contrasts the differences in definition between the United States and other British influenced parts of world such as Canada, Australia, New Zealand, Ireland, and the United Kingdom. Singular terminology dilemma. "Cattle" can only be used in the plural and not in the singular: it is a plurale tantum. Thus one may refer to "three cattle" or "some cattle", but not "one cattle". There is no universally used singular equivalent in modern English to "cattle", other than the gender and age-specific terms such as cow, bull, steer and heifer. Strictly speaking, the singular noun for the domestic bovine was "ox", however, "ox" today is rarely used in this general sense. An ox today generally denotes a draft beast, most commonly a castrated male (but is not to be confused with the unrelated wild musk ox). "Cow" has been in general use as a singular for the collective "cattle" in spite of the objections of those who say that it is a female-specific term, so that that phrases such as "that cow is a bull" would be absurd from a lexicographic standpoint. However, it is easy to use when a singular is needed and the gender is not known, as in "There is a cow in the road". Further, any herd of fully mature cattle in or near a pasture is statistically likely to consist mostly of cows, so the term is probably accurate even in the restrictive sense. Other than the few bulls needed for breeding, the vast majority of male cattle are castrated as calves and slaughtered for meat before the age of three years. Thus, in a pastured herd, any calves or herd bulls usually are clearly distinguishable from the cows due to distinctively different sizes and clear anatomical differences. The Oxford English Dictionary lists the use of "cows" as a synonym for "cattle" as an American usage. Merriam-Webster, a U.S. dictionary, recognizes the non-gender-specific use of "cow" as an alternate definition, whereas Collins, a UK dictionary, does not. Colloquially, more general non-specific terms may denote cattle when a singular form is needed. Australian, New Zealand and British farmers use the term "beast" or "cattle beast". "Bovine" is also used in Britain. The term "critter" is common in the western United States and Canada, particularly when referring to young cattle. In some areas of the American South (particularly the Appalachian region), where both dairy and beef cattle are present, an individual animal was once called a "beef critter", though that term is becoming archaic. Other terminology. Cattle raised for human consumption are called "beef cattle". Within the beef cattle industry in parts of the United States, the term "beef" (plural "beeves") is still used in its archaic sense to refer to an animal of either gender. Cows of certain breeds that are kept for the milk they give are called "dairy cows" or "milking cows" (formerly "milch cows" "milch" was pronounced as "milk"). Most young male offspring of dairy cows are sold for veal, and may be referred to as "veal calves." The term "dogies" was once used to describe calves and young steers in the context of ranch work in the American west, as in "Keep them dogies moving," but in modern use is considered archaic unless used in a humorous context. In some places, a cow kept to provide milk for one family is called a "house cow". Other obsolete terms for cattle include "neat" (this use survives in "neatsfoot oil", extracted from the feet and legs of cattle), and "beefing" (young animal fit for slaughter). An onomatopoeic term for one of the commonest sounds made by cattle is "moo", and this sound is also called "lowing". There are a number of other sounds made by cattle, including calves "bawling", and bulls "bellowing" (a high-pitched yodeling call). The bullroarer makes a sound similar to a territorial call made by bulls. Anatomy. Cattle have one stomach with four compartments. They are the rumen, reticulum, omasum, and abomasum, the rumen being the largest compartment. Cattle sometimes consume metal objects which are deposited in the reticulum, the smallest compartment, and this is where hardware disease occurs. The reticulum is known as the "Honeycomb." The omasum's main function is to absorb water and nutrients from the digestible feed. The omasum is known as the "Many Plies." The abomasum is like the human stomach; this is why it is known as the "true stomach". Cattle are ruminants, meaning that they have a digestive system that allows use of otherwise indigestible foods by repeatedly regurgitating and rechewing them as "cud". The cud is then reswallowed and further digested by specialised microorganisms in the rumen. These microbes are primarily responsible for decomposing cellulose and other carbohydrates into volatile fatty acids that cattle use as their primary metabolic fuel. The microbes inside of the rumen are also able to synthesize amino acids from non-protein nitrogenous sources such as urea and ammonia. As these microbes reproduce in the rumen, older generations die and their carcasses continue on through the digestive tract. These carcasses are then partially digested by the cattle, allowing it to gain a high quality protein source. These features allow cattle to thrive on grasses and other vegetation. The gestation period for a cow is nine months. A newborn calf weighs. The world record for the heaviest bull was a Chianina named Donetto, when he was exhibited at the Arezzo show in 1955. The heaviest steer was eight year old ‘Old Ben’, a Shorthorn Hereford cross weighing in at in 1910. Steers are generally killed before reaching. Breeding stock usually live to about 15 years (occasionally as much as 25 years). A common misconception about cattle (particularly bulls) is that they are enraged by the color red (something provocative is often said to be "like a red flag to a bull"). This is incorrect, as cattle are red-green color-blind. The myth arose from the use of red capes in the sport of bullfighting; in fact, two different capes are used. The capote is a large, flowing cape that is magenta and yellow. The more famous muleta is the smaller, red cape, used exclusively for the final, fatal segment of the fight. It is not the color of the cape that angers the bull, but rather the movement of the fabric that irritates the bull and incites it to charge. Although cattle cannot distinguish red from green, they do have two kinds of color receptors in their retinas (cone cells) and so are theoretically able to distinguish some colors, probably in a similar way to other red-green color-blind or dichromatic mammals (such as dogs, cats, horses and up to ten percent of male humans). Domestication and husbandry. Cattle occupy a unique role in human history, domesticated since at least the early Neolithic. They are raised for meat (beef cattle), dairy products and hides. They are also used as draft animals and in certain sports. Some consider cattle the oldest form of wealth, and cattle raiding consequently one of the earliest forms of theft. Cattle are often raised by allowing herds to graze on the grasses of large tracts of rangeland. Raising cattle in this manner allows the use of land that might be unsuitable for growing crops. The most common interactions with cattle involve daily feeding, cleaning and milking. Many routine husbandry practices involve ear tagging, dehorning, loading, medical operations, vaccinations and hoof care, as well as training for agricultural shows and preparations. There are also some cultural differences in working with cattle- the cattle husbandry of Fulani men rests on behavioural techniques, whereas in Europe cattle are controlled primarily by physical means like fences. Breeders utilise cattle husbandry to reduce M. bovis infection susceptibility by selective breeding and maintaining herd health to avoid concurrent disease. Cattle are farmed for beef, veal, dairy, leather and they are less commonly used simply to maintain grassland for wildlife- for example, in Epping Forest, England. They are often used in some of the most wild places for livestock. Depending on the breed, cattle can survive on hill grazing, heaths, marshes, moors and semi desert. Modern cows are more commercial than older breeds and, having become more specialized, are less versatile. For this reason many smaller farmers still favor old breeds, like the dairy breed of cattle Jersey. In Portugal, Spain, Southern France and some Latin American countries, bulls are used in the activity of bullfighting; a similar activity, Jallikattu, is seen in South India; in many other countries this is illegal. Other activities such as bull riding are seen as part of a rodeo, especially in North America. Bull-leaping, a central ritual in Bronze Age Minoan culture (see Bull (mythology)), still exists in southwestern France. In modern times, cattle are also entered into agricultural competitions. These competitions can involve live cattle or cattle carcasses. In terms of food intake by humans, consumption of cattle is less efficient than of grain or vegetables with regard to land use, and hence cattle grazing consumes more area than such other agricultural production. Nonetheless, cattle and other forms of domesticated animals can sometimes help to utilize plant resources in areas not easily amenable to other forms of agriculture. These factors were not as important in earlier times prior to the Earth's large human population. Environmental impact. A 400-page United Nations report from the Food and Agriculture Organization (FAO) states that cattle farming is "responsible for 18% of greenhouse gases." The production of cattle to feed and clothe humans stresses ecosystems around the world, and is assessed to be one of the top three environmental problems in the world on a local to global scale. The report, entitled "Livestock's Long Shadow", also surveys the environmental damage from sheep, chickens, pigs and goats. But in almost every case, the world's 1.5 billion cattle are cited as the greatest adverse impact with respect to climate change as well as species extinction. The report concludes that, unless changes are made, the massive damage reckoned to be due to livestock may more than double by 2050, as demand for meat increases. One of the cited changes suggests that intensification of the livestock industry may be suggested, since intensification leads to less land for a given level of production. Some microbes respire in the cattle gut by an anaerobic process known as methanogenesis (producing the gas methane). Cattle emit a large volume of methane, 95% of it through eructation or burping, not flatulence. As the carbon in the methane comes from the digestion of vegetation produced by photosynthesis, its release into the air by this process would normally be considered harmless, because there is no net increase in carbon in the atmosphere it's removed as carbon dioxide from the air by photosynthesis and returned to it as methane. Methane is a more potent greenhouse gas than carbon dioxide, having a warming effect 23 to 50 times greater, and according to Takahashi and Young "even a small increase in methane concentration in the atmosphere exerts a potentially significant contribution to global warming". Further analysis to the methane gas produced by livestock as a contributor to the increase in greenhouse gases is provided by Weart. Research is underway on methods of reducing this source of methane, by the use of dietary supplements, or treatments to reduce the proportion of methanogenetic microbes, perhaps by vaccination. Cattle are fed a concentrated high-corn diet which produces rapid weight gain, but this has side effects which include increased acidity in the digestive system. When improperly handled, manure and other byproducts of concentrated agriculture also have environmental consequences. Grazing by cattle at low intensities can create a favourable environment for native herbs and forbs; however, in most world regions cattle are reducing biodiversity due to overgrazing driven by food demands by an expanding human population. Oxen== Oxen'" (singular "'ox'") are large and heavyset breeds of "Bos taurus" cattle trained as draft animals. Often they are adult, castrated males. Usually an ox is over four years old due to the need for training and to allow it to grow to full size. Oxen are used for plowing, transport, hauling cargo, grain-grinding by trampling or by powering machines, irrigation by powering pumps, and wagon drawing. Oxen were commonly used to skid logs in forests, and sometimes still are, in low-impact select-cut logging. Oxen are most often used in teams of two, paired, for light work such as carting. In the past, teams might have been larger, with some teams exceeding twenty animals when used for logging. An ox is nothing more than a mature bovine with an "education." The education consists of the animal's learning to respond appropriately to the teamster's (ox driver's) signals. These signals are given by verbal commands or by noise (whip cracks) and many teamsters were known for their voices and language. In North America, the commands are (1) "get up", (2) "whoa", (3) "back up", (4) "gee" (turn right) and (5) "haw" (turn left). Oxen must be painstakingly trained from a young age. Their teamster must provide as many as a dozen yokes of different sizes as the animals grow. A wooden yoke is fastened about the neck of each pair so that the force of draft is distributed across their shoulders. From calves, oxen are chosen with horns since the horns hold the yoke in place when the oxen lower their heads, back up, or slow down (particularly with a wheeled vehicle going downhill). Yoked oxen cannot slow a load like harnessed horses can; the load has to be controlled downhill by other means. The gait of the ox is often important to ox trainers, since the speed the animal walks should roughly match the gait of the ox driver who must work with it. U.S. ox trainers favored larger breeds for their ability to do more work and for their intelligence. Because they are larger animals, the typical ox is the male of a breed, rather than the smaller female. Females are potentially more useful producing calves and milk. Oxen can pull harder and longer than horses, particularly on obstinate or almost un-movable loads. This is one of the reasons that teams drag logs from forests long after horses had taken over most other draft uses in Europe and North America. Though not as fast as horses, they are less prone to injury because they are more sure-footed and do not try to jerk the load. An "ox" is not a unique breed of bovine, nor have any "blue" oxen lived outside the folk tales surrounding Paul Bunyan, the mythical American logger. A possible exception and antecedent to this legend is the Belgian Blue breed which is known primarily for its unusual musculature and at times exhibits unusual white blue, blue roan, or blue coloration. The unusual musculature of the breed is believed to be due to a natural mutation of the gene that codes for the protein Myostatin, which is responsible for normal muscle atrophy. Many oxen are used worldwide, especially in developing countries. Ox is also used for various cattle products, irrespective of age, sex or training of the beast for example, ox-blood, ox-liver, ox-kidney, ox-heart, ox-hide. Hindu tradition. Cows are venerated within the Hindu religion of India. According to Vedic scripture they are to be treated with the same respect 'as one's mother' because of the milk they provide; "The cow is my mother. The bull is my sire." They appear in numerous stories from the Puranas and Vedas, for example the deity Krishna is brought up in a family of cowherders, and given the name Govinda (protector of the cows). Also Shiva is traditionally said to ride on the back of a bull named Nandi. Bulls in particular are seen as a symbolic emblem of selfless duty and religion. In ancient rural India every household had a few cows which provided a constant supply of milk and a few bulls that helped as draft animals. Many Hindus feel that at least it was economically wise to keep cattle for their milk rather than consume their flesh for one single meal. Gandhi explains his feelings about cow protection as follows: "The cow to me means the entire sub-human world, extending man's sympathies beyond his own species. Man through the cow is enjoined to realize his identity with all that lives. Why the ancient rishis selected the cow for apotheosis is obvious to me. The cow in India was the best comparison; she was the giver of plenty. Not only did she give milk, but she also made agriculture possible. The cow is a poem of pity; one reads pity in the gentle animal. She is the second mother to millions of mankind. Protection of the cow means protection of the whole dumb creation of God. The appeal of the lower order of creation is all the more forceful because it is speechless." In heraldry. Cattle are typically represented in heraldry by the bull'". Present status. The world cattle population is estimated to be about 995,838,000 head. India is the nation with the largest number of cattle, about 281,700,000 or 28.29% of the world cattle population, followed by Brazil: 187,087,000, 18.79%; China: 139,721,000, 14.03%; the United States: 96,669,000, 9.71%; EU-27: at 87,650,000, 8.80%; Argentina: 51,062,000, 5.13%; Australia: 29,202,000, 2.93%; South Africa: 14,187,000, 1.42%; Canada: 13,945,000, 1.40% and other countries: 49,756,000 5.00%. Africa has about 20,000,000 head of cattle, many of which are raised in traditional ways and serve partly as tokens of their owner's wealth. Cattle today are the basis of a multi-billion dollar industry worldwide. The international trade in beef for 2000 was over $30 billion and represented only 23 percent of world beef production. (Clay 2004). The production of milk, which is also made into cheese, butter, yogurt, and other dairy products, is comparable in economic size to beef production and provides an important part of the food supply for many of the world's people. Cattle hides, used for leather to make shoes and clothing, are another widespread product. Cattle remain broadly used as draft animals in many developing countries, such as India. An automobile'" or "'motor car'" is a wheeled motor vehicle for transporting passengers, which also carries its own engine or motor. Most definitions of the term specify that automobiles are designed to run primarily on roads, to have seating for one to eight people, to typically have four wheels, and to be constructed principally for the transport of people rather than goods. However, the term "automobile" is far from precise, because there are many types of vehicles that do similar tasks. As of 2002, there were 590 million passenger cars worldwide (roughly one car per eleven people). Etymology. The word automobile'" comes, via the French "automobile", from the Ancient Greek word αὐτός ("autós", "self") and the Latin "mobilis" ("movable"); meaning a vehicle that moves itself, rather than being pulled or pushed by a separate animal or another vehicle. The alternative name "car" is believed to originate from the Latin word "carrus" or "carrum" ("wheeled vehicle"), or the Middle English word "carre" ("cart") (from Old North French), or "karros" (a Gallic wagon). History. Although Nicolas-Joseph Cugnot is often credited with building the first self-propelled mechanical vehicle or automobile in about 1769 by adapting an existing horse-drawn vehicle, this claim is disputed by some, who doubt Cugnot's three-wheeler ever ran or was stable. Ferdinand Verbiest, a member of a Jesuit mission in China, built the first steam-powered vehicle around 1672 which was of small scale and designed as a toy for the Chinese Emperor that was unable to carry a driver or a passenger, but quite possibly, was the first working steam-powered vehicle ('auto-mobile'). What is not in doubt is that Richard Trevithick built and demonstrated his "Puffing Devil" road locomotive in 1801, believed by many to be the first demonstration of a steam-powered road vehicle although it was unable to maintain sufficient steam pressure for long periods, and would have been of little practical use. In Russia, in the 1780s, Ivan Kulibin developed a human-pedalled, three-wheeled carriage with modern features such as a flywheel, brake, gear box, and bearings; however, it was not developed further. François Isaac de Rivaz, a Swiss inventor, designed the first internal combustion engine, in 1806, which was fueled by a mixture of hydrogen and oxygen and used it to develop the world's first vehicle, albeit rudimentary, to be powered by such an engine. The design was not very successful, as was the case with others such as Samuel Brown, Samuel Morey, and Etienne Lenoir with his hippomobile, who each produced vehicles (usually adapted carriages or carts) powered by clumsy internal combustion engines. In November 1881 French inventor Gustave Trouvé demonstrated a working three-wheeled automobile that was powered by electricity. This was at the International Exhibition of Electricity in Paris. Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on the problem at about the same time, Karl Benz'" generally is acknowledged as the inventor of the modern automobile. An automobile powered by his own four-stroke cycle gasoline engine was built in Mannheim, Germany by Karl Benz in 1885 and granted a patent in January of the following year under the auspices of his major company, Benz & Cie., which was founded in 1883. It was an integral design, without the adaptation of other existing components and including several new technological elements to create a new concept. This is what made it worthy of a patent. He began to sell his production vehicles in 1888. In 1879 Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first "Motorwagen" was built in 1885 and he was awarded the patent for its invention as of his application on January 29, 1886. Benz began promotion of the vehicle on July 3, 1886 and approximately 25 Benz vehicles were sold between 1888 and 1893, when his first four-wheeler was introduced along with a model intended for affordability. They also were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz automobile to his line of products. Because France was more open to the early automobiles, initially more were built and sold in France through Roger than Benz sold in Germany. In 1896, Benz designed and patented the first internal-combustion flat engine, called a "boxermotor" in German. During the last years of the nineteenth century, Benz was the largest automobile company in the world with 572 units produced in 1899 and because of its size, Benz & Cie., became a joint-stock company. Daimler and Maybach founded Daimler Motoren Gesellschaft (Daimler Motor Company, DMG) in Cannstatt in 1890 and under the brand name, "Daimler", sold their first automobile in 1892, which was a horse-drawn stagecoach built by another manufacturer, that they retrofitted with an engine of their design. By 1895 about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after falling out with their backers. Benz and the Maybach and Daimler team seem to have been unaware of each other's early work. They never worked together because by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG. Daimler died in 1900 and later that year, Maybach designed an engine named "Daimler-Mercedes", that was placed in a specially-ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG automobile was produced and the model was named Mercedes after the Maybach engine which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the "Daimler" brand name were sold to other manufacturers. Karl Benz proposed co-operation between DMG and Benz & Cie. when economic conditions began to deteriorate in Germany following the First World War, but the directors of DMG refused to consider it initially. Negotiations between the two companies resumed several years later when these conditions worsened and, in 1924 they signed an "Agreement of Mutual Interest", valid until the year 2000. Both enterprises standardized design, production, purchasing, and sales and they advertised or marketed their automobile models jointly—although keeping their respective brands. On June 28, 1926, Benz & Cie. and DMG finally merged as the "Daimler-Benz" company, baptizing all of its automobiles "Mercedes Benz" as a brand honoring the most important model of the DMG automobiles, the Maybach design later referred to as the "1902 Mercedes-35hp", along with the Benz name. Karl Benz remained a member of the board of directors of Daimler-Benz until his death in 1929 and at times, his two sons participated in the management of the company as well. In 1890, Emile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines and so laid the foundation of the automobile industry in France. The first design for an American automobile with a gasoline internal combustion engine was drawn in 1877 by George Selden of Rochester, New York, who applied for a patent for an automobile in 1879, but the patent application expired because the vehicle was never built and proved to work (a requirement for a patent). After a delay of sixteen years and a series of attachments to his application, on November 5, 1895, Selden was granted a United States patent for a two-stroke automobile engine, which hindered, more than encouraged, development of automobiles in the United States. His patent was challenged by Henry Ford and others, and overturned in 1911. In Britain there had been several attempts to build steam cars with varying degrees of success with Thomas Rickett even attempting a production run in 1860. Santler from Malvern is recognized by the Veteran Car Club of Great Britain as having made the first petrol-powered car in the country in 1894 followed by Frederick William Lanchester in 1895 but these were both one-offs. The first production vehicles in Great Britain came from the Daimler Motor Company, a company founded by Harry J. Lawson in 1896 after purchasing the right to use the name of the engines. Lawson's company made its first automobiles in 1897 and they bore the name "Daimler". In 1892, German engineer Rudolf Diesel was granted a patent for a "New Rational Combustion Engine". In 1897 he built the first Diesel Engine. Steam-, electric-, and gasoline-powered vehicles competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s. Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda's version of the Wankel engine has had more than very limited success. Production. The large-scale, production-line manufacturing of affordable automobiles was debuted by Ransom Olds at his Oldsmobile factory in 1902. This concept was greatly expanded by Henry Ford, beginning in 1914. As a result, Ford's cars came off the line in fifteen minute intervals, much faster than previous methods, increasing productivity eight fold (requiring 12.5 man-hours before, 1 hour 33 minutes after), while using less manpower. It was so successful, paint became a bottleneck. Only Japan black would dry fast enough, forcing the company to drop the variety of colors available before 1914, until fast-drying Duco lacquer was developed in 1926. This is the source of Ford's apocryphal remark, "any color as long as it's black". In 1914, an assembly line worker could buy a Model T with four months' pay. Ford's complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury. The combination of high wages and high efficiency is called "Fordism," and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the United States. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods. In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroen was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going broke; by 1930, 250 companies which did not, had disappeared. Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910-1911), independent suspension, and four-wheel brakes. Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, so buyers could "move up" as their fortunes improved. Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; by the 1990s, corporate drivetrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as Apperson, Cole, Dorris, Haynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left. In Europe much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford's practise of vertical integration, buying Hotchkiss (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41% of total British car production. Most British small-car assemblers, from Abbey to Xtra had gone under. Citroen did the same in France, coming to cars in 1919; between them and other cheap cars in reply such as Renault's 10CV and Peugeot's 5CV, they produced 550,000 cars in 1925, and Mors, Hurtu, and others could not compete. Germany's first mass-manufactured car, the Opel 4PS "Laubfrosch" (Tree Frog), came off the line at Russelsheim in 1924, soon making Opel the top car builder in Germany, with 37.5% of the market. Fuel and propulsion technologies. Most automobiles in use today are propelled by gasoline (also known as petrol) or diesel internal combustion engines, which are known to cause air pollution and are also blamed for contributing to climate change and global warming. Increasing costs of oil-based fuels, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for automobiles. Efforts to improve or replace existing technologies include the development of hybrid vehicles, and electric and hydrogen vehicles which do not release pollution into the air. Diesel. Diesel-engined cars have long been popular in Europe with the first models being introduced in the 1930s by Mercedes Benz and Citroen. The main benefit of diesel engines is a 50% fuel burn efficiency compared with 27% in the best gasoline engines. A down-side of the Diesel engine is that better filters are required to reduce the presence in the exhaust gases of fine soot particulates called diesel particulate matter. Manufacturers are now starting to fit diesel particulate filters to remove the soot. Many diesel-powered cars can run with little or no modifications on 100% biodiesel and combinations of other organic oils. Gasoline. Gasoline engines have the advantage over diesel in being lighter and able to work at higher rotational speeds and they are the usual choice for fitting in high-performance sports cars. Continuous development of gasoline engines for over a hundred years has produced improvements in efficiency and reduced pollution. The carburetor was used on nearly all road car engines until the 1980s but it was long realised better control of the fuel air mixture could be achieved with fuel injection. Indirect fuel injection was first used in aircraft engines from 1909, in racing car engines from the 1930s, and road cars from the late 1950s. Gasoline Direct Injection (GDI) is now starting to appear in production vehicles such as the 2007 (Mark II) BMW Mini. Exhaust gases are also cleaned up by fitting a catalytic converter into the exhaust system. Clean air legislation in many of the car industries most important markets has made both catalysts and fuel injection virtually universal fittings. Most modern gasoline engines also are capable of running with up to 15% ethanol mixed into the gasoline; older vehicles may have seals and hoses that can be harmed by ethanol. With a small amount of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85%. 100% ethanol is used in some parts of the world (such as Brazil), but vehicles must be started on pure gasoline and switched over to ethanol once the engine is running. Most gasoline engined cars can also run on LPG with the addition of an LPG tank for fuel storage and carburettor modifications to add an LPG mixer. LPG produces fewer toxic emissions and is a popular fuel for fork-lift trucks that have to operate inside buildings. Biofuels. Ethanol, other alcohol fuels (biobutanol) and biogasoline have widespread use an automotive fuel. Most alcohols have less energy per liter than gasoline and are usually blended with gasoline. Alcohols are used for a variety of reasons: to increase octane, to improve emissions, and as an alternative to petroleum based fuel, since they can be made from agricultural crops. Brazil's ethanol program provides about 20% of the nation's automotive fuel needs, as a result of the mandatory use of E25 blend of gasoline throughout the country, 3 million cars that operate on pure ethanol, and 6 million dual or flexible-fuel vehicles sold since 2003. that run on any mix of ethanol and gasoline. The commercial success of "flex" vehicles, as they are popularly known, have allowed sugarcane based ethanol fuel to achieve a 50% market share of the gasoline market by April 2008. Electric. The first electric cars were built around 1832, well before internal combustion powered cars appeared. For a period of time electrics were considered superior due to the silent nature of electric motors compared to the very loud noise of the gasoline engine. This advantage was removed with Hiram Percy Maxim's invention of the muffler in 1897. Thereafter internal combustion powered cars had two critical advantages: 1) long range and 2) high specific energy (far lower weight of petrol fuel versus weight of batteries). The building of battery electric vehicles that could rival internal combustion models had to wait for the introduction of modern semiconductor controls and improved batteries. Because they can deliver a high torque at low revolutions electric cars do not require such a complex drive train and transmission as internal combustion powered cars. Some post-2000 electric car designs such as the Venturi Fétish are able to accelerate from 0-60 mph (96 km h) in 4.0 seconds with a top speed around 130 mph (210 km h). Others have a range of 250 miles (400 km) on the United States Environmental Protection Agency‎ (EPA) highway cycle requiring 31 2 hours to completely charge. Equivalent fuel efficiency to internal combustion is not well defined but some press reports give it at around. Steam. Steam power, usually using an oil- or gas-heated boiler, was also in use until the 1930s but had the major disadvantage of being unable to power the car until boiler pressure was available (although the newer models could achieve this in well under a minute). It has the advantage of being able to produce very low emissions as the combustion process can be carefully controlled. Its disadvantages include poor heat efficiency and extensive requirements for electric auxiliaries.. Air. A compressed air car is an alternative fuel car that uses a motor powered by compressed air. The car can be powered solely by air, or by air combined (as in a hybrid electric vehicle) with gasoline diesel ethanol or electric plant and regenerative braking. Instead of mixing fuel with air and burning it to drive pistons with hot expanding gases; "compressed air cars" use the expansion of compressed air to drive their pistons. Several prototypes are available already and scheduled for worldwide sale by the end of 2008, though this has not happened as of January 2009. Companies releasing this type of car include Tata Motors and Motor Development International (MDI). Gas turbine. In the 1950s there was a brief interest in using gas turbine engines and several makers including Rover and Chrysler produced prototypes. In spite of the power units being very compact, high fuel consumption, severe delay in throttle response, and lack of engine braking meant no cars reached production. Rotary (Wankel) engines. Rotary Wankel engines were introduced into road cars by NSU with the Ro 80 and later were seen in the Citroën GS Birotor and several Mazda models. In spite of their impressive smoothness, poor reliability and fuel economy led to them largely disappearing. Mazda, beginning with the R100 then RX-2, has continued research on these engines, overcoming most of the earlier problems with the RX-7 and RX-8. Rocket and jet cars. A rocket car holds the record in drag racing. However, the fastest of those cars are used to set the Land Speed Record, and are propelled by propulsive jets emitted from rocket, turbojet, or more recently and most successfully turbofan engines. The ThrustSSC car using two Rolls-Royce Spey turbofans with reheat was able to exceed the speed of sound at ground level in 1997. Safety. There are three main statistics to which automobile safety can be compared: While road traffic injuries represent the leading cause in worldwide injury-related deaths, their popularity undermines this statistic. Mary Ward became one of the first documented automobile fatalities in 1869 in Parsonstown, Ireland and Henry Bliss one of the United States' first pedestrian automobile casualties in 1899 in New York. There are now standard tests for safety in new automobiles, like the EuroNCAP and the US NCAP tests, as well as insurance-backed IIHS tests. Costs and benefits. The costs of automobile usage, which may include the cost of: acquiring the vehicle, repairs, maintenance, fuel, depreciation, parking fees, tire replacement, taxes and insurance, are weighed against the cost of the alternatives, and the value of the benefits, perceived and real, of vehicle usage. The benefits may include on-demand transportation, mobility, independence and convenience. Similarly the costs to society of encompassing automobile use, which may include those of: maintaining roads, land use, pollution, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that automobile use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of automobile production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the opportunities. The ability for humans to move flexibly from place to place has far reaching implications for the nature of societies. Environmental impact. Transportation is a major contributor to air pollution in most industrialised nations. According to the American Surface Transportation Policy Project nearly half of all Americans are breathing unhealthy air. Their study showed air quality in dozens of metropolitan areas has got worse over the last decade. In the United States the average passenger car emits 11,450 lbs (5 tonnes) of carbon dioxide, along with smaller amounts of carbon monoxide, hydrocarbons, and nitrogen. Residents of low-density, residential-only sprawling communities are also more likely to die in car collisions, which kill 1.2 million people worldwide each year, and injure about forty times this number. Sprawl is more broadly a factor in inactivity and obesity, which in turn can lead to increased risk of a variety of diseases. Other species are often negatively impacted by automobiles via habitat destruction and pollution. Over the lifetime of the average automobile the "loss of habitat potential" may be over 50,000 square meters (538,195 square feet) based on Primary production correlations. Fuel taxes may act as an incentive for the production of more efficient, hence less polluting, car designs (e.g. hybrid vehicles) and the development of alternative fuels. High fuel taxes may provide a strong incentive for consumers to purchase lighter, smaller, more fuel-efficient cars, or to not drive. On average, today's automobiles are about 75 percent recyclable, and using recycled steel helps reduce energy use and pollution. In the United States Congress, federally mandated fuel efficiency standards have been debated regularly, passenger car standards have not risen above the standard set in 1985. Light truck standards have changed more frequently, and were set at in 2007. Alternative fuel vehicles are another option that is less polluting than conventional petroleum powered vehicles. Future car technologies. Automobile propulsion technology under development include electric and plug-in hybrids, battery electric vehicles, hydrogen cars, biofuels, and various alternative fuels. Research into future alternative forms of power include the development of fuel cells, Homogeneous Charge Compression Ignition (HCCI), stirling engines, and even using the stored energy of compressed air or liquid nitrogen. New materials which may replace steel car bodies include duraluminum, fiberglass, carbon fiber, and carbon nanotubes. Telematics technology is allowing more and more people to share cars, on a pay-as-you-go basis, through such schemes as City Car Club in the UK, Mobility in mainland Europe, and Zipcar in the US. Alternatives to the automobile. Established alternatives for some aspects of automobile use include public transit (buses, trolleybuses, trains, subways, monorails, tramways), cycling, walking, rollerblading, skateboarding, horseback riding and using a velomobile. Car-share arrangements and carpooling are also increasingly popular–the U.S. market leader in car-sharing has experienced double-digit growth in revenue and membership growth between 2006 and 2007, offering a service that enables urban residents to "share" a vehicle rather than own a car in already congested neighborhoods. Bike-share systems have been tried in some European cities, including Copenhagen and Amsterdam. Similar programs have been experimented with in a number of U.S. Cities. Additional individual modes of transport, such as personal rapid transit could serve as an alternative to automobiles if they prove to be socially accepted.