ratio of word probabilities predicted from brain for corn and truck

close this window

corn

truck

top 10 words in brain distribution (in article):
species key time form fish type common allow size design
top 10 words in brain distribution (in article):
body time steel type term modern allow produce common size
top 10 words in brain distribution (not in article):
church bird lock egg switch machine needle tube body bicycle
top 10 words in brain distribution (not in article):
church bishop cell iron blade head form century pope cut
times more probable under corn 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under truck
(words not in the model)
Maize'" ("Zea mays" L. ssp. "mays"), known as corn'" in some countries, is a cereal grain domesticated in Mesoamerica and subsequently spread throughout the American continents. After European contact with the Americas in the late 15th and early 16th century, maize spread to the rest of the world. Maize is the most widely grown crop in the Americas (332 million tonnes annually in the United States alone). Hybrid maize, due to its high grain yield as a result of heterosis ("hybrid vigor"), is preferred by farmers over conventional varieties. While some maize varieties grow up to 7 metres (23 ft) tall, most commercially grown maize has been bred for a standardized height of 2.5 metres (8 ft). Sweet corn is usually shorter than field-corn varieties. Naming conventions. The term "maize" derives from the Spanish form ("maíz") of the indigenous Taino term for the plant, and was the form most commonly heard in the United Kingdom. In the United States, Canada (maïs in French speaking Canadian regions) and Australia, the usual term is "corn", which originally referred to any grain, but which now refers exclusively to maize, having been shortened from the form "Indian corn" (which currently, at least in the U.S. & Canada, is often used to refer specifically to multi-colored "field corn" cultivars). Physiology. Maize stems superficially resemble bamboo canes and the internodes can reach 20–30 centimetres (8–12 in). Maize has a very distinct growth form; the lower leaves being like broad flags, 50–100 centimetres long and 5–10 centimetres wide (2–4 ft by 2–4 in); the stems are erect, conventionally 2–3 metres (7–10 ft) in height, with many nodes, casting off flag-leaves at every node. Under these leaves and close to the stem grow the ears. They grow about 3 milimetres a day. The ears are female inflorescences, tightly covered over by several layers of leaves, and so closed-in by them to the stem that they do not show themselves easily until the emergence of the pale yellow silks from the leaf whorl at the end of the ear. The silks are elongated stigmas that look like tufts of hair, at first green, and later red or yellow. Plantings for silage are even denser, and achieve an even lower percentage of ears and more plant matter. Certain varieties of maize have been bred to produce many additional developed ears, and these are the source of the "baby corn" that is used as a vegetable in Asian cuisine. Maize is a facultative long-night plant and flowers in a certain number of growing degree days >50 °F (10 °C) in the environment to which it is adapted. The magnitude of the influence that long nights have on the number of days that must pass before maize flowers is genetically prescribed and regulated by the phytochrome system. Photoperiodicity can be eccentric in tropical cultivars, while the long days characteristic of higher latitudes allow the plants to grow so tall that they do not have enough time to produce seed before being killed by frost. These attributes, however, may prove useful in using tropical maize for biofuels. The apex of the stem ends in the tassel, an inflorescence of male flowers. Each silk may become pollinated to produce one kernel of corn. Young ears can be consumed raw, with the cob and silk, but as the plant matures (usually during the summer months) the cob becomes tougher and the silk dries to inedibility. By the end of the growing season, the kernels dry out and become difficult to chew without cooking them tender first in boiling water. Modern farming techniques in developed countries usually rely on dense planting, which produces on average only about 0.9 ears per stalk because it stresses the plants. The kernel of corn has a pericarp of the fruit fused with the seed coat, typical of the grasses. It is close to a multiple fruit in structure, except that the individual fruits (the kernels) never fuse into a single mass. The grains are about the size of peas, and adhere in regular rows round a white pithy substance, which forms the ear. An ear contains from 200 to 400 kernels, and is from 10–25 centimetres (4–10 inches) in length. They are of various colors: blackish, bluish-gray, red, white and yellow. When ground into flour, maize yields more flour, with much less bran, than wheat does. However, it lacks the protein gluten of wheat and, therefore, makes baked goods with poor rising capability and coherence. A genetic variation that accumulates more sugar and less starch in the ear is consumed as a vegetable and is called sweet corn. Immature maize shoots accumulate a powerful antibiotic substance, DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one). DIMBOA is a member of a group of hydroxamic acids (also known as benzoxazinoids) that serve as a natural defense against a wide range of pests including insects, pathogenic fungi and bacteria. DIMBOA is also found in related grasses, particularly wheat. A maize mutant (bx) lacking DIMBOA is highly susceptible to be attacked by aphids and fungi. DIMBOA is also responsible for the relative resistance of immature maize to the European corn borer (family Crambidae). As maize matures, DIMBOA levels and resistance to the corn borer decline. Due to its shallow roots of only one to two inches deep, maize is susceptible to droughts, intolerant of nutrient-deficient soils, and prone to be uprooted by severe winds. Allergy. Maize contains lipid transfer protein, an undigestable protein which survives cooking. This protein has been linked to a rare and understudied allergy to maize in humans. The allergic reaction can cause skin rash, swelling or itching of mucus membranes, diarrhoea, vomiting, asthma and, in severe cases, anaphylactic shock. It has been noted that those with corn allergy almost always have peach allergy as well. It is unclear how common this allergy is in the general populace. Genetics. Many forms of maize are used for food, sometimes classified as various subspecies: This system has been replaced (though not entirely displaced) over the last 60 years by multi-variable classifications based on ever more data. Agronomic data were supplemented by botanical traits for a robust initial classification, then genetic, cytological, protein and DNA evidence was added. Now the categories are forms (little used), races, racial complexes, and recently branches. Maize has 10 chromosomes (n=10). The combined length of the chromosomes is 1500 cM. Some of the maize chromosomes have what are known as "chromosomal knobs": highly repetitive heterochromatic domains that stain darkly. Individual knobs are polymorphic among strains of both maize and teosinte. Barbara McClintock used these knob markers to prove her transposon theory of "jumping genes", for which she won the 1983 Nobel Prize in Physiology or Medicine. Maize is still an important model organism for genetics and developmental biology today. There is a stock center of maize mutants, "The Maize Genetics Cooperation Stock Center", funded by the USDA Agricultural Research Service and located in the Department of Crop Sciences at the University of Illinois at Urbana-Champaign. The total collection has nearly 80,000 samples. The bulk of the collection consists of several hundred named genes, plus additional gene combinations and other heritable variants. There are about 1000 chromosomal aberrations (e.g., translocations and inversions) and stocks with abnormal chromosome numbers (e.g., tetraploids). Genetic data describing the maize mutant stocks as well as myriad other data about maize genetics can be accessed at MaizeGDB, the Maize Genetics and Genomics Database. In 2005, the U.S. National Science Foundation (NSF), Department of Agriculture (USDA) and the Department of Energy (DOE) formed a consortium to sequence the maize genome. The resulting DNA sequence data will be deposited immediately into GenBank, a public repository for genome-sequence data. Sequencing the corn genome has been considered difficult because of its large size and complex genetic arrangements. The genome has 50,000–60,000 genes scattered among the 2.5 billion bases—molecules that form DNA—that make up its 10 chromosomes. (By comparison, the human genome contains about 2.9 billion bases and 26,000 genes.) On February 26, 2008, researchers announced that they had sequenced the entire genome of maize. Origin. There are several theories about the specific origin of maize in Mesoamerica: The first model was proposed by Nobel Prize winner George Beadle in 1939. Though it has experimental support, it has not explained a number of problems, among them: The domestication of maize is of particular interest to researchers — archaeologists, geneticists, ethnobotanists, geographers, etc. The process is thought by some to have started 7,500 to 12,000 years ago (corrected for solar variations). Recent genetic evidence suggests that maize domestication occurred 9,000 years ago in central Mexico, perhaps in the highlands between Oaxaca and Jalisco. The crop wild relative teosinte most similar to modern maize grows in the area of the Balsas River. Archaeological remains of early maize ears, found at Guila Naquitz Cave in the Oaxaca Valley, date back roughly 6,250 years (corrected; 3450 BC, uncorrected); the oldest ears from caves near Tehuacan, Puebla, date ca. 2750 BC. Little change occurred in ear form until ca. 1100 BC when great changes appeared in ears from Mexican caves: maize diversity rapidly increased and archaeological teosinte was first deposited. Perhaps as early as 1500 BC, maize began to spread widely and rapidly. As it was introduced to new cultures, new uses were developed and new varieties selected to better serve in those preparations. Maize was the staple food, or a major staple, of most the pre-Columbian North American, Mesoamerican, South American, and Caribbean cultures. The Mesoamerican civilization was strengthened upon the field crop of maize; through harvesting it, its religious and spiritual importance and how it impacted their diet. Maize formed the Mesoamerican people’s identity. During the 1st millennium AD, maize cultivation spread from Mexico into the U.S. Southwest and a millennium later into U.S. Northeast and southeastern Canada, transforming the landscape as Native Americans cleared large forest and grassland areas for the new crop. It is unknown what precipitated its domestication, because the edible portion of the wild variety is too small and hard to obtain to be eaten directly, as each kernel is enclosed in a very hard bi-valve shell. However, George Beadle demonstrated that the kernels of teosinte are readily "popped" for human consumption, like modern popcorn. Some have argued that it would have taken too many generations of selective breeding in order to produce large compressed ears for efficient cultivation. However, studies of the hybrids readily made by intercrossing teosinte and modern maize suggest that this objection is not well founded. In 2005, research by the USDA Forest Service indicated that the rise in maize cultivation 500 to 1,000 years ago in what is now the southeastern United States contributed to the decline of freshwater mussels, which are very sensitive to environmental changes. Production quantities and methods. Maize is widely cultivated throughout the world, and a greater weight of maize is produced each year than any other grain. While the United States produces almost half of the world's harvest(~42.5%), other top producing countries include China, Brazil, Mexico, Argentina, India and France. Worldwide production was around 800 million tonnes in 2007—just slightly more than rice (~650 million tonnes) or wheat (~600 million tonnes). In 2007, over 150 million hectares of maize were planted worldwide, with a yield of 4970.9 kilogram hectare. Because it is cold-intolerant, in the temperate zones maize must be planted in the spring. Its root system is generally shallow, so the plant is dependent on soil moisture. As a C4 plant (a plant that uses C4 carbon fixation), maize is a considerably more water-efficient crop than C3 plants (plants that use C3 carbon fixation) like the small grains, alfalfa and soybeans. Maize is most sensitive to drought at the time of silk emergence, when the flowers are ready for pollination. In the United States, a good harvest was traditionally predicted if the corn was "knee-high by the Fourth of July," although modern hybrids generally exceed this growth rate. Maize used for silage is harvested while the plant is green and the fruit immature. Sweet corn is harvested in the "milk stage," after pollination but before starch has formed, between late summer and early to mid-autumn. Field corn is left in the field very late in the autumn in order to thoroughly dry the grain, and may, in fact, sometimes not be harvested until winter or even early spring. The importance of sufficient soil moisture is shown in many parts of Africa, where periodic drought regularly causes famine by causing maize crop failure. Maize was planted by the Native Americans in hills, in a complex system known to some as the Three Sisters: beans used the corn plant for support and in turn provided nitrogen from nitrogen-fixing bacteria which live on the roots of beans A truck'" is a type of motor vehicle commonly used for carrying goods and materials. Some light trucks are relatively small, similar in size to a passenger automobile. Commercial transportation or fire trucks can be quite large and can also serve as a platform for specialized equipment. Etymology. The word "truck" possibly derives from the Greek "trochos" (τροχός =wheel). In North America, certain kinds of big wheels were called "trucks". When the gasoline-engine driven trucks came into fashion, these were called "motor trucks." International variance. In the United States and Canada "truck" is usually reserved for commercial vehicles larger than normal cars, and for pickups and other vehicles having an open load bed. In the United Kingdom and the Republic of Ireland, "lorry" is used as well as "truck", but only used for the medium and heavy types (see below); "i.e." a van, a pickup or an off-road four-wheel drive vehicle such as a Jeep would never be regarded as a lorry in these countries, unlike in the United States (it should be noted, however, that the term lorry is not used in the United States). The same applies to the initials "HGV" (for Heavy Goods Vehicle) which is basically synonymous with "lorry". The word "truck" is also accepted in these countries, and can apply to large vans as well as to lorries ("i.e." its scope is slightly wider). In the UK vernacular, "wagon" is still commonly used to describe various larger vehicles. Though the US term station wagon is occasionally used in the UK, it can cause confusion (despite retaining the US definition), so the societal term estate car remains widely popular. "Lorry" is also used in Hong Kong. In South Africa, the word "kombi" is used, based on its Afrikaans equivalent. The word "lorry" is also used in Cambodia, although here it can refer to a train. In Australia and New Zealand, a pickup truck (a relatively small, usually car- or van-derived vehicle, with an open back body) is called a ute'" (short for "utility") and the word "truck" or "lorry" is reserved for larger vehicles. Other languages have loanwords based on these terms, such as the Malay language and the Spanish language in northern Mexico. A commonly understood term for truck across many European countries is "'camion'". Camion is also used in Quebec to identify trucks in French. Additionally, from the German language the initials "PKW" ("'P'"ersonen"'K'"raft"'W'"agen or passenger carrying vehicle) for a car van or small truck) and "LKW" ("'L'"ast"'K'"raft"'W'"agen or cargo load freight carrying vehicle) for larger trucks are understood. In U.S. English the word "truck" is used in the names of particular types of truck, such as a "fire truck" or "tanker truck". Note that in British English these would be a "fire engine" and "tanker" respectively. Driving. In the United States a commercial driver's license is required to drive any type of vehicle weighing 26,001 lbs (11,800 kg) or more. In the United Kingdom there are complex rules; as an overview, to drive a vehicle weighing more than 7,500 kg for commercial purposes requires a specialist license (the type varies depending on the use of the vehicle and number of seats). For licenses first acquired after 1997, that weight was reduced to 3,500 kg, not including trailers. In the Australia a truck driving license is required for any motor vehicle with a GVM exceeding 4500 kg. The motor vehicles classes are further expanded as "'LR/MR'" (Light Medium rigid up to 8000 kg GVM + trailer to maximum GCM 8000 kg), "'HR'" (Heavy Rigid +trailer up to GCM 9000 kg), "'HC'" (Heavy Combination, a typical prime mover +semi trailer combination) and the "'MC'" (Multi Combination e.g B Doubles Road trains). There is also a heavy vehicle transmission condition for a licence class HR, HC or MC in a vehicle fitted with an automatic or synchromesh transmission, driver’s licence will restrict to vehicles of that class fitted with a synchromesh or automatic transmission. To have the condition removed, a person needs to pass a practical driving test in a vehicle with non synchromesh transmission (constant mesh or crash box). Engine. The oldest truck was built in 1896 by Gottlieb Daimler. Small trucks such as SUVs or pickups, and even light medium-duty trucks in North America and Russia will use gasoline engines. Most heavier trucks use four stroke turbo intercooler diesel engines. Huge off-highway trucks use locomotive-type engines such as a V12 Detroit Diesel two stroke engine. North American manufactured highway trucks almost always use an engine built by a third party, such as CAT, Cummins, or Detroit Diesel. The only exceptions to this are Volvo and its subsidiary Mack Trucks, which are available with their own engines. Freightliner Trucks, Sterling Trucks and Western Star, subsidiaries of Daimler AG, are available with Mercedes-Benz and Detroit Diesel engines. Trucks and buses built by Navistar International usually also contain International engines. The Swedish manufacturer Scania claims they stay away from the U.S. market because of this third party tradition. In the European Union all new truck engines must comply with Euro 5 regulations. Drivetrain. Small trucks use the same type of transmissions as almost all cars, having either an automatic transmission or a manual transmission with synchronisers. Bigger trucks often use manual transmissions without synchronisers, saving bulk and weight, although synchromesh transmissions are used in larger trucks as well. Transmissions without synchronizers, known as "crash boxes", require double-clutching for each shift, (which can lead to repetitive motion injuries), or a technique known colloquially as "floating," a method of changing gears which doesn't use the clutch, except for starts and stops, due to the physical effort of double clutching, especially with non power assisted clutches, faster shifts, and less clutch wear. Double-clutching allows the driver to control the engine and transmission revolutions to synchronize, so that a smooth shift can be made, "e.g.," when upshifting, the accelerator pedal is released and the clutch pedal is depressed while the gear lever is moved into neutral, the clutch pedal is then released and quickly pushed down again while the gear lever is moved to the next highest gear. Finally, the clutch pedal is released and the accelerator pedal pushed down to obtain required engine speed. Although this is a relatively fast movement, perhaps a second or so while transmission is in neutral, it allows the engine speed to drop and synchronize engine and transmission revolutions relative to the road speed. Downshifting is performed in a similar fashion, except the engine speed is now required to increase (while transmission is in neutral) just the right amount in order to achieve the synchronization for a smooth, non-collision gear change. "Skip changing" is also widely used; in principle operation is the same as double-clutching, but it requires neutral be held slightly longer than a single gear change. Common North American setups include 9, 10, 13, 15, and 18 speeds. Automatic and semi-automatic transmissions for heavy trucks are becoming more and more common, due to advances both in transmission and engine power. In Europe 8, 10, 12 and 16 gears are common on larger trucks with manual transmission, while automatic or semiautomatic transmissions would have anything from 5 to 12 gears. Almost all heavy truck transmissions are of the "range and split" (double H shift pattern) type, where range change and so-called half gears or splits are air operated and always preselected before the main gear selection. More new trucks in Europe are being sold with automatic or semi-automatic transmissions. This may be due the fuel consumption can be lowered and truck durability improved. The primary reason perhaps is the fact that such transmissions give a driver more time to concentrate on the road and traffic conditions. Frame. A truck frame consists of two parallel boxed (tubular) or C-shaped rails, or beams, held together by crossmembers. These frames are referred to as ladder frames due to their resemblance to a ladder if tipped on end. The rails consist of a tall vertical section (two if boxed) and two shorter horizontal flanges. The height of the vertical section provides opposition to vertical flex when weight is applied to the top of the frame (beam resistance). Though typically flat the whole length on heavy duty trucks, the rails may sometimes be tapered or arched for clearance around the engine or over the axles. The holes in rails are used either for mounting vehicle components and running wires and hoses, or measuring and adjusting the orientation of the rails at the factory or repair shop. Though they may be welded, crossmembers are most often attached to frame rails by bolts or rivets. Crossmembers may be boxed or stamped into a c-shape, but are most commonly boxed on modern vehicles, particularly heavy trucks. The frame is almost always made of steel, but can be made (whole or in part) of aluminum for a lighter weight. A tow bar may be found attached at one or both ends, but heavy trucks almost always make use of a fifth wheel hitch. Environmental effects. Trucks contribute to air, noise, and water pollution similarly to automobiles. Trucks may emit lower air pollution emissions than cars per pound of vehicle mass, although the absolute level per vehicle mile traveled is higher and diesel particulate matter is especially problematic for health. With respect to noise pollution trucks emit considerably higher sound levels at all speeds compared to typical car; this contrast is particularly strong with heavy-duty trucks. There are several aspects of truck operations that contribute to the overall sound that is emitted. Continuous sounds are those from tires rolling on the roadway and the constant hum of their diesel engines at highway speeds. Less frequent noises, but perhaps more noticeable, are things like the repeated sharp whine of a turbocharger on acceleration or the abrupt blare of an exhaust brake when traversing a downgrade. There has been noise regulation put in place to help control where and when the use of engine braking is allowed. Concerns have been raised about the effect of trucking on the environment, particularly as part of the debate on global warming. In the period from 1990 to 2003, carbon dioxide emissions from transportation sources increased by 20%, despite improvements in vehicle fuel efficiency. In 2005, transportation accounted for 27% of U.S. greenhouse gas emission, increasing faster than any other sector. Between 1985 and 2004, in the U.S., energy consumption in freight transportation grew nearly 53%, while the number of ton-miles carried increased only 43%. "Modal shifts account for a nearly a 23% increase in energy consumption over this period. Much of this shift is due to a greater fraction of freight ton-miles being carried via truck and air, as compared to water, rail, and pipelines." According to a 1995 U.S. Government estimate, the energy cost of carrying a ton of freight a distance of one kilometer averages 337 kJ for water, 221 kJ for rail, 2 000 kJ for trucks and nearly 13 000 kJ for air transport. Many environmental organizations favor laws and incentives to encourage the switch from road to rail, especially in Europe. The European Parliament is moving to ensure that charges on heavy-goods vehicles should be based in part on the air and noise pollution they produce and the congestion they cause, according to legislation approved by the Transport Committee The Eurovignette scheme has been proposed whereby new charges would be potentially levied against things such as noise and air pollution and also weight related damages from the lorries themselves Commercial insurance. Primary Liability Insurance coverage protects the truck from damage or injuries to other people as a result of a truck accident. This truck insurance coverage is mandated by U.S. state and federal agencies and proof of coverage is required to be sent to them. Insurance coverage limits range from $35,000 to $1,000,000. Pricing is dependent on region, driving records, and history of the trucking operation. Motor Truck Cargo insurance protects the transporter for his responsibility in the event of damaged or lost freight. The policy is purchased with a maximum load limit per vehicle. Cargo insurance coverage limits can range from $10,000 to $100,000 or more. Pricing for this insurance is mainly dependent on the type of cargo being hauled. Truck shows. In the UK, three truck shows are popular -Shropshire Truck Show in Oswestry Showground during May, The UK Truck Show held in June at Santa Pod Raceway and FIA European Drag Racing Championships from the home of European Drag-Racing. The UK Truck Show features drag-racing with 6-ton trucks from the British Truck Racing Association, plus other diesel-powered entertainment. Truck Shows provide operators with an opportunity to win awards for their trucks.