ratio of word probabilities predicted from brain for bear and butterfly

close this window

bear

butterfly

top 10 words in brain distribution (in article):
light animal drink produce species time common power wolf tooth
top 10 words in brain distribution (in article):
species breed male human size female range kill common live
top 10 words in brain distribution (not in article):
lamp water wine beer bottle tea design cat valve glass
top 10 words in brain distribution (not in article):
animal cat wolf hunt material dog wild population bear build
times more probable under bear 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under butterfly
(words not in the model)
Bears'" are mammals of the family "'Ursidae'". Bears are classified as caniforms, or doglike carnivorans, with the pinnipeds being their closest living relatives. Although there are only eight living species of bear, they are widespread, appearing in a wide variety of habitats throughout the Northern Hemisphere and partially in the Southern Hemisphere. That which pertains to bears is called "ursine". Bears are found in the continents of North America, South America, Europe, and Asia. Common characteristics of modern bears include a large body with stocky legs, a long snout, shaggy hair, plantigrade paws with five nonretractile claws, and a short tail. While the polar bear is mostly carnivorous and the giant panda feeds almost entirely on bamboo, the remaining six species are omnivorous, with largely varied diets including both plants and animals. With the exceptions of courting individuals and mothers with their young, bears are typically solitary animals. They are sometimes diurnal, but are usually active during the night (nocturnal) or twilight (crepuscular). Bears are aided by an excellent sense of smell, and despite their heavy build and awkward gait, they can run quickly and are adept climbers and swimmers. In autumn some bear species forage large amounts of fermented fruits which affects their behaviour.Bears use shelters such as caves and burrows as their dens, which are occupied by most species during the winter for a long period of sleep similar to hibernation. Bears have been hunted since prehistoric times for their meat and fur. To this day, they play a prominent role in the arts, mythology, and other cultural aspects of various human societies. In modern times, the bear's existence has been pressured through the encroachment of their habitats and the illegal trade of bears and bear parts, including the Asian bile bear market. The IUCN lists six bear species as vulnerable or endangered, and even "least concern" species such as the brown bear are at risk of extirpation in certain countries. The poaching and international trade of these most threatened populations is prohibited, but still ongoing. Evolutionary relationships. Fossil of Cave bear ("Ursus spelaeus") The Ursidae family belongs to the order Carnivora and is one of nine families in the suborder Caniformia, or "doglike" carnivorans. Bears' closest living relatives are the pinnipeds, a clade of three families: Odobenidae (the walrus), Otariidae (fur seals and sea lions), and Phocidae (true or earless seals). Bears comprise eight species in three subfamilies: Ailuropodinae (monotypic with the giant panda), Tremarctinae (monotypic with the Spectacled Bear), and Ursinae (containing six species divided into one to three genera, depending upon authority). The origins of Ursidae can be traced back to the very small and graceful "Parictis" that had a skull only 7 cm (3 in) long. Parictis first occur in North America in the Late Eocene (ca. 38 million years ago), but this genus did not appear in Eurasia and Africa until the Miocene. The raccoon-sized, dog-like "Cephalogale", however, is widely regarded as the most primitive ursid and is ideally suited as a representative basal taxon for the family. "Cephalogale" first appeared during the middle Oligocene and early Miocene (approximately 20–30 million years ago) in Europe. "Cephalogale" gave rise to a lineage of early bears of the genus "Ursavus". This genus radiated in Asia and ultimately gave rise to the first true bears (genus "Ursus") in Europe, 5 million years ago. Even among its primitive species, such as "C. minor", it exhibits typical ursid synapomorphic dentition such as posteriorly oriented M2 postprotocrista molars, elongated m2 molars, and a reduction of the premolars. Living members of the ursids are morphologically well defined by their hypocarnivorous (non-strictly meat-eating) dentitions, but fossil ursids include hypercarnivorous (strictly meat-eating) taxa, although they never achieved the extreme hypercarnivory seen in mustelids. Cephalogale was a mesocarnivore (intermediate meat-eater). Other extinct bear genera include "Arctodus", "Agriarctos", "Plionarctos" and "Indarctos". It is uncertain whether ursids were in Asia during the late Eocene, although there is some suggestion that a limited immigration from Asia may have produced "Parictis" in North America due to the major sea level lowstand at ca. 37 Ma, but no "Parictis" fossils have yet to be found in East Asia. Ursids did, however, become very diversified in Asia later during the Oligocene. Four genera representing two subfamilies (Amphicynodontinae and Hemicyoninae) have been discovered in the Oligocene of Asia: "Amphicticeps", "Amphicynodon", "Pachycynodon", and "Cephalogale". "Amphicticeps" is endemic from Asia and the other three genera are common to both Asia and Europe. This indicates migration of ursids between Asia and Europe during the Oligocene and migration of several taxa from Asia to North America likely occurred later during the late Oligocene or early Miocene. Although "Amphicticeps" is morphologically closely related to "Allocyon", and also to "Kolponomos" of North America, no single genus of the Ursidae from this time period is known to be common to both Eurasia and North America. Cephalogale, however, do appear in North America in the early Miocene. It is interesting to note that rodents, such as "Haplomys" and "Pseudotheridomys" (late Oligocene) and "Plesiosminthus" and "Palaeocastor" (early Miocene), are common to both Asia and North America and this indicates that faunal exchange did occur between Asia and North America during the late Oligocene to early Miocene. Ursid migration from Asia to North America would therefore have also been very likely to occur during this time. In the late Neogene three major carnivoran migrations that definitely included ursids are recognized between Eurasia and North America. The first (probably 21–18 Ma) was waves of intermittent dispersals including "Amphicynodon", "Cephalogale" and "Ursavus". The second migration occurred about 7–8 Ma and included "Agriotherium" this was unusual among ursoids in that it also colonised sub-Saharan Africa. The third wave took place in the early Pliocene 4 Ma, consisting of "Ursus". The giant panda's taxonomy has long been debated. Its original classification by Armand David in 1869 was within the bear genus Ursus, but in 1870 it was reclassified by Alphonse Milne-Edwards to the raccoon family. In recent studies, the majority of DNA analyses suggest that the giant panda has a much closer relationship to other bears and should be considered a member of the family Ursidae. The status of the red panda remains uncertain, but many experts, including Wilson and Reeder, classify it as a member of the bear family. Others place it with the raccoons in Procyonidae or in its own family, the Ailuridae. Multiple similarities between the two pandas, including the presence of false thumbs, are thought to represent convergent evolution for feeding primarily on bamboo. There is also evidence that, unlike their neighbors elsewhere, the brown bears of Alaska's ABC islands are more closely related to polar bears than they are to other brown bears in the world. Researchers Gerald Shields and Sandra Talbot of the University of Alaska Fairbanks Institute of Arctic Biology studied the DNA of several samples of the species and found that their DNA is different from that of other brown bears. The researchers discovered that their DNA was unique compared to brown bears anywhere else in the world. The discovery has shown that while all other brown bears share a brown bear as their closest relative, those of Alaska's ABC Islands differ and share their closest relation with the polar bear. There is also supposed to be a very rare large bear in China called the blue bear, which presumably is a type of black bear. This animal has never been photographed. Koalas are often referred to as bears due to their appearance; they are not bears, however, but marsupials. Classification. The genera "Melursus" and "Helarctos" are sometimes also included in "Ursus". The Asiatic black bear and the polar bear used to be placed in their own genera, "Selenarctos" and "Thalarctos" which are now placed at subgenus rank. A number of hybrids have been bred between American black, brown, and polar bears (see Ursid hybrids). Biology. Despite being quadrupeds, bears can stand and sit similarly to humans. Bears are generally bulky and robust animals with relatively short legs. Unlike other land carnivorans, bears stand and walk on the soles of their feet rather than on their toes. They distribute their weight toward the hindfeet which makes then look lumbering when they walk. They are still quite fast with the brown bear reaching 30 mph although they are still slower than felines and canines. Bear can stand on their hindfeet and sit up straight with remarkable balance. Bears have non-retractable claws which are used for digging, climbing, tearing and catching prey. Their ears are rounded. Dentition. Unlike most other members of the Carnivora, bears have relatively undeveloped carnassial teeth, and their teeth are adapted for a diet that includes a significant amount of vegetable matter. The canine teeth are large, and the molar teeth flat and crushing. There is considerable variation in dental formula even within a given species. It has been suggested that this indicates bears are still in the process of evolving from a carnivorous to a predominantly herbivorous diet. Polar bears appear to have secondarily re-evolved fully functional carnassials, as their diet has switched back towards carnivory. The dental formula for living bears is: Diet & Interspecific Interactions. Their carnivorous reputation non-withstanding, most bears have adopted to a diet comprised of more plant than animal matter and are completely opportunistic omnivores. One exception is the Polar Bear, who has had to adopt a diet of mainly marine mammals to survive in the Arctic. The other exception is the Giant Panda has adapted a diet comprised mainly of bamboo. The Sloth Bear, though not as specialized as the previous two species, has lost several front teeth usually seen in bears and developed a long, suctioning tongue in order to feed on the termites and other burrowing insects that they favor. All bears will feed on any food source that becomes available. When taking warm-blooded animals, bears will typically take small or young animals, because of the endurance and potential danger that comes with attacking large prey. Although (besides Polar Bears) both species of black bear and the Brown Bear can sometimes take large prey, such as ungulates. Often, bears will feed on other large animals when they encounter a carcass, whether or not the carcass is claimed by or is the kill of another predator. This competition is the main source of interspecies conflict. Bears are typically the apex predators in their range due to their size and power, and can defend a carcass against nearly all comers. Mother bears also can usually defend their cubs against other predators. The Tiger is the only known predator known to regularly prey on adult bears, including Sloth Bears, Asiatic Black Bears, Giant Pandas, Sun Bears and small Brown Bears. Reproduction. The bear's courtship period is very brief. Bears in northern climates reproduce seasonally, usually after a period of inactivity similar to hibernation, although tropical species breed all year round. Cubs are born toothless, blind, and bald. The cubs of brown bears, usually born in litters of 1–3, will typically stay with the mother for two full seasons. They feed on their mother's milk through the duration of their relationship with their mother, although as the cubs continue to grow, nursing becomes less frequent and learn to begin hunting with the mother. They will remain with the mother for approximately three years, until she enters the next cycle of estrus and drives the cubs off. Bears will reach sexual maturity in five to seven years. Male bears, especially Polar and Brown Bears, will kill and sometimes devour cubs born to another father in order to induce a female to breed again. Female bears are often successful in driving off males in protection of their cubs, despite being rather smaller. Winter dormancy. Many bears of northern regions are assumed to hibernate in the winter. While many bear species do go into a physiological state called hibernation or winter sleep, it is not true hibernation. In true hibernators, body temperatures drop to near ambient and heart rate slows drastically, but the animals periodically rouse themselves to urinate or defecate and to eat from stored food. The body temperature of bears, on the other hand, drops only a few degrees from normal and heart rate slows only slightly. They normally do not wake during this "hibernation", and therefore do not eat, drink, urinate or defecate the entire period. Higher body heat and being easily roused may be adaptations, because females give birth to their cubs during this winter sleep. It can therefore be considered a more efficient form of hibernation because they need not awake through the entire period, but they are more quickly and easily awakened at the end of their hibernation. They have to stay in a den for the whole hibernation. Relationship with humans. Some species, such as the polar bear, American black bear, Sloth Bear and the brown bear, are dangerous to humans, especially in areas where they have become used to people. On the west coast of Canada, the American black bear has become an integral part of the silviculture industries, specifically treeplanting. The bears are coaxed into areas of harvested forest to "flush out" the other wildlife, i.e. moose, which are a far greater threat to planters. All bears are physically powerful and are likely capable of fatally attacking a person, but they, for the most part, are shy, easily frightened and will avoid humans. The danger that bears pose is often vastly exaggerated, in part by the human imagination. However, when a mother feels her cubs are threatened, she will behave ferociously. It is recommended to give all bears a wide berth because they are behaviorally unpredictable. Laws have been passed in many areas of the world to protect bears from hunters habitat destruction. Some populated areas with bear populations have also outlawed the feeding of bears, including allowing them access to garbage or other food waste. Bears in captivity have been trained to dance, box, or ride bicycles; however, this use of the animals became controversial in the late 20th century. Bears were kept for baiting in Europe at least since the 16th century. Bears as food and medicine. Many people enjoy hunting bears and eating them. Their meat is dark and stringy, like a tough cut of beef. In Cantonese cuisine, bear paws are considered a delicacy. The peoples of China, Japan, and Korea use bears' body parts and secretions (notably their gallbladders and bile) as part of traditional Chinese medicine. It is believed more than 12,000 bile bears are kept on farms, farmed for their bile, in China, Vietnam and South Korea. Bear meat must be cooked thoroughly as it can often be infected with trichinellosis. Myth and legend. Some evidence has been brought to light on prehistoric bear worship, see Arctic, Arcturus, Great Bear, Berserker, Kalevala. Anthropologists such as Joseph Campbell have regarded this as a common feature in most of the fishing and hunting-tribes. The prehistoric Finns, along with most Finno-Ugric peoples, considered the bear as the spirit of one's forefathers. This is why the bear was a greatly respected animal, with several euphemistic names. The bear is the national animal of Finland. This kind of attitude is reflected in the traditional Russian fairy tale "Morozko", whose arrogant protagonist Ivan tries to kill a mother bear and her cubs and is punished and humbled by having his own head turned magically into a bear's head and being subsequently shunned by human society. "The Brown Bear of Norway" is a Scottish fairy tale telling the adventures of a girl who married a prince magically turned into a bear, and who managed to get him back into a human form by the force of her love and after many trials and difficulties. There has been evidence about early bear worship in China and among the Ainu culture as well (see Iomante). Korean people in their mythology identify the bear as their ancestor and symbolic animal. According to the Korean legend, a god imposed a difficult test on a she-bear, and when she passed it the god turned her into a woman and married her. In addition, the Proto-Indo-European word for bear, "*h₂ŕ̥tḱos" (ancestral to the Greek "arktos", Latin "ursus", Welsh "arth" (cf. Arthur), Albanian ari, Armenian arj, Sanskrit "ṛkṣa", Hittite "ḫartagga") seems to have been subject to taboo deformation or replacement (as was the word for wolf, "wlkwos"), resulting in the use of numerous unrelated words with meanings like "brown one" (English "bruin") and "honey-eater" (Slavic "medved"). Thus four Indo-European language groups do not share the same PIE root. The theory of the bear taboo is taught to almost all beginning students of Indo-European and historical linguistics; the putative original PIE word for bear is itself descriptive, because a cognate word in Sanskrit is "rakṣas", meaning "harm, injury". Legends of saints taming bears are common in the Alpine zone. In the arms of the bishopric of Freising ("see illustration") the bear is the dangerous totem animal tamed by St. Corbinian and made to carry his civilised baggage over the mountains. A bear also features prominently in the legend of St. Romedius, who is also said to have tamed one of these animals and had the same bear carry him from his hermitage in the mountains to the city of Trento. Similar stories are told of Saint Gall and Saint Columbanus. This recurrent motif was used by the Church as a symbol of the victory of Christianity over Paganism, represented by the fiery. Imaginary bears are a popular feature of many children's stories including Goldilocks and the Three Bears, the Berenstein Bears, and Winnie the Pooh. The constellations Ursa Major and Ursa Minor represent bears. Symbolic use. The Russian bear is a common National personification for Russia (as well as the Soviet Union) and even Germany. The brown bear is Finland's national animal. In the United States, the black bear is the state animal of Louisiana, New Mexico, and West Virginia; the grizzly bear is the state animal of both Montana and California. Bears appear in the canting arms of Berne and Berlin. Also, "bear", "bruin", or specific types of bears are popular nicknames or mascots, e.g. for sports teams (Chicago Bears, Boston Bruins); and a bear cub called Misha was mascot of the 1980 Summer Olympics in Moscow, USSR. Smokey Bear has become a part of American culture since his introduction in 1944. Known to almost all Americans, he and his message, "Only You Can Prevent Forest Fires" (updated in 2001 to "Only You Can Prevent Wildfires") has been a symbol of preserving woodlands. Smokey wears a hat similar to one worn by many U.S. state police officers, giving rise to the CB slang "bear" or "Smokey" for the highway patrol. Figures of speech. The physical attributes and behaviours of bears are commonly used in figures of speech in English. Teddy bears. Around the world, many children have stuffed animals in the form of bears. Names. In Scandinavia the word for bear is "Björn" (or "Bjørn"), and is a relatively common given name for males. The use of this name is ancient and has been found mentioned in several runestone inscriptions. The name was also used by J.R.R. Tolkien in his book "The Hobbit", where a bear-like character is named Beorn. The female first name "Ursula", originally derived from a Christian saint's name and common in English- and German-speaking countries, means "Little she-bear" (dimunitive of Latin "ursa"). In Switzerland the male first name "Urs" is especially popular. In Russian and other Slavic languages, the word for bear, "Medved" (медведь), and variants or derivatives such as Medvedev are common surnames. The Irish family name "McMahon" means "Son of Bear" in Irish. One of widely held etymological explanations for the common name "Arthur" is that it originally meant "bear-like". In East European Jewish communities, the name "Ber" (בער) Yiddish cognate of "Bear" has been attested as a common male first name, at least since the 18th century, and was among others the name of several prominent Rabbis. The Yiddish "Ber" is still in use among Orthodox Jewish communities in Israel, the US and other countries. With the transition from Yiddish to Hebrew under the influence of Zionism, the Hebrew word for "bear", "Dov" (דב), was taken up in contemporary Israel and is at present among the commonly used male first names in that country. "Ten Bears" (Paruasemana) was the name of a well-known 19th Century chieftain among the Comanche. Also among other Native American tribes, bear-related names are attested. A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in obtect pupae). Within hours, the wings form a cuticle so hard and well-joined to the body that pupae can be picked up and handled without damage to the wings. Pupa. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding and begins "wandering" in the quest of a suitable pupation site, often the underside of a leaf. The larva transforms into a pupa (or chrysalis) by anchoring itself to a substrate and moulting for the last time. The chrysalis is usually incapable of movement, although some species can rapidly move the abdominal segments or produce sounds to scare potential predators. The pupal transformation into a butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in the adult color pattern are marked by changes in the expression of particular transcription factors in the early pupa. Adult or imago. The adult, sexually mature, stage of the insect is known as the imago. As Lepidoptera, butterflies have four wings that are covered with tiny scales (see photo). The fore and hindwings are not hooked together, permitting a more graceful flight. An adult butterfly has six legs, but in the nymphalids, the first pair is reduced. After it emerges from its pupal stage, a butterfly cannot fly until the wings are unfolded. A newly-emerged butterfly needs to spend some time inflating its wings with blood and letting them dry, during which time it is extremely vulnerable to predators. Some butterflies' wings may take up to three hours to dry while others take about one hour. Most butterflies and moths will excrete excess dye after hatching. This fluid may be white, red, orange, or in rare cases, blue. External morphology. Butterflies have two antennae, two compound eyes, and a proboscis. Adult butterflies have four wings: a forewing and hindwing on both the left and the right side of the body. The body is divided into three segments: the head, thorax, and the abdomen. They have two antennae, two compound eyes, and a proboscis. Scales. Butterflies are characterized by their scale-covered wings. The coloration of butterfly wings is created by minute scales. These scales are pigmented with melanins that give them blacks and browns, but blues, greens, reds and iridescence are usually created not by pigments but the microstructure of the scales. This structural coloration is the result of coherent scattering of light by the photonic crystal nature of the scales. The scales cling somewhat loosely to the wing and come off easily without harming the butterfly. Polymorphism. Many adult butterflies exhibit polymorphism, showing differences in appearance. These variations include geographic variants and seasonal forms. In addition many species have females in multiple forms, often with mimetic forms. Sexual dimorphism in coloration and appearance is widespread in butterflies. In addition many species show sexual dimorphism in the patterns of ultraviolet reflectivity, while otherwise appearing identical to the unaided human eye. Most of the butterflies have a sex-determination system that is represented as ZW with females being the heterogametic sex (ZW) and males homogametic (ZZ). Genetic abnormalities such as gynandromorphy also occur from time to time. In addition many butterflies are infected by "Wolbachia" and infection by the bacteria can lead to the conversion of males into females or the selective killing of males in the egg stage. Mimicry. Batesian and Mullerian mimicry in butterflies is common. Batesian mimics imitate other species to enjoy the protection of an attribute they do not share, aposematism in this case. The Common Mormon of India has female morphs which imitate the unpalatable red-bodied swallowtails, the Common Rose and the Crimson Rose. Mullerian mimicry occurs when aposematic species evolve to resemble each other, presumably to reduce predator sampling rates, the Heliconius butterflies from the Americas being a good example. Wing markings called eyespots are present in some species; these may have an automimicry role for some species. In others, the function may be intraspecies communication, such as mate attraction. In several cases, however, the function of butterfly eyespots is not clear, and may be an evolutionary anomaly related to the relative elasticity of the genes that encode the spots. Seasonal polyphenism. div name="wet-dry forms" Many of the tropical butterflies have distinctive seasonal forms. This phenomenon is termed "seasonal polyphenism" and the seasonal forms of the butterflies are called the dry-season and wet-season forms. How the season affects the genetic expression of patterns is still a subject of research. Experimental modification by ecdysone hormone treatment has demonstrated that it is possible to control the continuum of expression of variation between the wet and dry-season forms. The dry-season forms are usually more cryptic and it has been suggested that the protection offered may be an adaptation. Some also show greater dark colours in the wet-season form which may have thermoregulatory advantages by increasing ability to absorb solar radiation. Habits. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen, tree sap, rotting fruit, dung, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants although in general they do not carry as much pollen load as the Hymenoptera. They are however capable of moving pollen over greater distances. Within the Lepidoptera, the Hawkmoths and the Noctuidae are dominant as pollinators. As adults, butterflies consume only liquids and these are sucked by means of their proboscis. They feed on nectar from flowers and also sip water from damp patches. This they do for water, for energy from sugars in nectar and for sodium and other minerals which are vital for their reproduction. Several species of butterflies need more sodium than provided by nectar. They are attracted to sodium in salt and they sometimes land on people, attracted by human sweat. Besides damp patches, some butterflies also visit dung, rotting fruit or carcasses to obtain minerals and nutrients. In many species, this Mud-puddling behaviour is restricted to the males and studies have suggested that the nutrients collected are provided as a nuptial gift along with the spermatophore during mating. Butterflies sense the air for scents, wind and nectar using their antennae. The antennae come in various shapes and colours. The hesperids have a pointed angle or hook to the antennae, while most other families show knobbed antennae. The antennae are richly covered with sensillae. A butterfly's sense of taste is coordinated by chemoreceptors on the tarsi, which work only on contact, and are used to determine whether an egg-laying insect's offspring will be able to feed on a leaf before eggs are laid on it. Many butterflies use chemical signals, pheromones, and specialized scent scales (androconia) and other structures (coremata or 'Hair pencils' in the Danaidae) are developed in some species. Vision is well developed in butterflies and most species are sensitive to the ultraviolet spectrum. Many species show sexual dimorphism in the patterns of UV reflective patches. Color vision may be widespread but has been demonstrated in only a few species. Some butterflies have organs of hearing and some species are also known to make stridulatory and clicking sounds. Many butterflies, such as the Monarch butterfly, are migratory and capable of long distance flights. They migrate during the day and use the sun to orient themselves. They also perceive polarized light and use it for orientation when the sun is hidden. Many species of butterfly maintain territories and actively chase other species or individuals that may stray into them. Some species will bask or perch on chosen perches. The flight styles of butterflies are often characteristic and some species have courtship flight displays. Basking is an activity which is more common in the cooler hours of the morning. Many species will orient themselves to gather heat from the sun. Some species have evolved dark wingbases to help in gathering more heat and this is especially evident in alpine forms. Flight. Like many other members of the insect world, the lift generated by butterflies is more than what can be accounted for by steady-state, non-transitory aerodynamics. Studies using "Vanessa atalanta" in a windtunnel show that they use a wide variety of aerodynamic mechanisms to generate force. These include wake capture, vortices at the wing edge, rotational mechanisms and Weis-Fogh 'clap-and-fling' mechanisms. The butterflies were also able to change from one mode to another rapidly. (See also Insect flight) Migration. Many butterflies migrate over long distances. Particularly famous migrations being those of the Monarch butterfly from Mexico to North America, a distance of about 4,000 to 4,800 kilometres (2500-3000 miles). Other well known migratory species include the Painted Lady and several of the Danaine butterflies. Spectacular and large scale migrations associated with the Monsoons are seen in peninsular India. Migrations have been studied in more recent times using wing tags and also using stable hydrogen isotopes. Butterflies have been shown to navigate using time compensated sun compasses. They can see polarized light and therefore orient even in cloudy conditions. The polarized light in the region close to the ultraviolet spectrum is suggested to be particularly important. It is suggested that most migratory butterflies are those that belong to semi-arid areas where breeding seasons are short. The life-histories of their host plants also influence the strategies of the butterflies. Defense. Butterflies are threatened in their early stages by parasitoids and in all stages by predators, diseases and environmental factors. They protect themselves by a variety of means. Chemical defenses are widespread and are mostly based on chemicals of plant origin. In many cases the plants themselves evolved these toxic substances as protection against herbivores. Butterflies have evolved mechanisms to sequester these plant toxins and use them instead in their own defense. These defense mechanisms are effective only if they are also well advertised and this has led to the evolution of bright colours in unpalatable butterflies. This signal may be mimicked by other butterflies. These mimetic forms are usually restricted to the females. Cryptic coloration is found in many butterflies. Some like the oakleaf butterfly are remarkable imitations of leaves. As caterpillars, many defend themselves by freezing and appearing like sticks or branches. Some papilionid caterpillars resemble bird dropping in their early instars. Some caterpillars have hairs and bristly structures that provide protection while others are gregarious and form dense aggregations. Some species also form associations with ants and gain their protection (See Myrmecophile). Behavioural defenses include perching and wing positions to avoid being conspicuous. Some female Nymphalid butterflies are known to guard their eggs from parasitoid wasps. Eyespots and tails are found in many lycaenid butterflies and these divert the attention of predators from the more vital head region. An alternative theory is that these cause ambush predators such as spiders to approach from the wrong end and allow for early visual detection. A butterfly's hind wings are thought to allow the butterfly to take, swift, tight turns to evade predators. Notable species. There are between 15,000 and 20,000 species of butterflies worldwide. Some well known species from around the world include: Art. Artistic depictions of butterflies have been used in many cultures including Egyptian hieroglyphs 3500 years ago. Today, butterflies are widely used in various objects of art and jewelry: mounted in frame, embedded in resin, displayed in bottles, laminated in paper, and used in some mixed media artworks and furnishings. Butterflies have also inspired the "butterfly fairy" as an art and fictional character. Symbolism. According to the “Butterflies” chapter in by Lafcadio Hearn, a butterfly is seen as the personification of a person's soul; whether they be living, dying, or already dead. One Japanese superstition says that if a butterfly enters your guestroom and perches behind the bamboo screen, the person whom you most love is coming to see you. However, large numbers of butterflies are viewed as bad omens. When Taira no Masakado was secretly preparing for his famous revolt, there appeared in Kyoto so vast a swarm of butterflies that the people were frightened -thinking the apparition to be a portent of coming evil. The Russian word for "butterfly", бабочка ("bábochka"), also means "bow tie". It is a diminutive of "baba" or "babka" ("woman, grandmother, cake", whence also "babushka"= "grandmother". The Ancient Greek word for "butterfly" is ψυχή ("psȳchē"), which primarily means "soul", "mind". According to Mircea Eliade's "Encyclopedia of Religion", some of the Nagas of Manipur trace their ancestry from a butterfly. In Chinese culture two butterflies flying together are a symbol of love. Also a famous Chinese folk story called Butterfly Lovers. The Taoist philosopher Zhuangzi once had a dream of being a butterfly flying without care about humanity, however when he woke up and realized it was just a dream, he thought to himself "Was I before a man who dreamt about being a butterfly, or am I now a butterfly who dreams about being a man?" In some old cultures, butterflies also symbolize rebirth into a new life after being inside a cocoon for a period of time. Jose Rizal delivered a speech in 1884 in a banquet and mentioned "the Oriental chrysalis... is about to leave its cocoon" comparing the emergence of a "new Philippines" with that of butterfly metamorphosis. He has also often used the butterfly imagery in his poems and other writings to express the Spanish Colonial Filipinos' longing for liberty. Much later, in a letter to Ferdinand Blumentritt, Rizal compared his life in exile to a weary butterfly with sun-burnt wings. Some people say that when a butterfly lands on you it means good luck. However, in Devonshire, people would traditionally rush around to kill the first butterfly of the year that they see, or else face a year of bad luck. Also, in the Philippines, a lingering black butterfly or moth in the house is taken to mean that someone in the family has died or will soon die. The idiom "butterflies in the stomach" is used to describe a state of nervousness. Technological inspiration. Researches on the wing structure of Palawan Birdwing butterflies led to new wide wingspan kite and aircraft designs. Studies on the reflection and scattering of light by the scales on wings of swallowtail butterflies led to the innovation of more efficient light-emitting diodes. The structural coloration of butterflies is inspiring nanotechnology research to produce paints that do not use toxic pigments and in the development of new display technologies. Furthermore, the discoloration and health of butterflies in butterfly farms, is now being studied for use as indicators of air quality in several cities.