ant |
key |
top 10 words in brain distribution (in article): engine cell energy gas produce type speed air drive form |
top 10 words in brain distribution (in article): blade head cut metal century form shape type modern design |
top 10 words in brain distribution (not in article): vehicle fuel wheel car power gear design aircraft oil passenger |
top 10 words in brain distribution (not in article): iron plant steel fruit handle hair produce grow tool seed |
times more probable under ant 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under key (words not in the model) | |
A phylogeny of the extant ant subfamilies. "'Ants'" are social insects of the family "'Formicidae'", and along with the related wasps and bees, they belong to the order Hymenoptera. Ants evolved from wasp-like ancestors in the mid-Cretaceous period between 110 and 130 million years ago and diversified after the rise of flowering plants. Today, more than 12,000 species are classified with upper estimates of about 14,000 species. They are easily identified by their elbowed antennae and a distinctive node-like structure that forms a slender waist. Ants form colonies that range in size from a few dozen predatory individuals living in small natural cavities to highly organised colonies which may occupy large territories and consist of millions of individuals. These larger colonies consist mostly of sterile wingless females forming castes of "workers", "soldiers", or other specialised groups. Ant colonies also have some fertile males called "drones" and one or more fertile females called "queens". The colonies are sometimes described as superorganisms because ants appear to operate as a unified entity, collectively working together to support the colony. Ants have colonised almost every landmass on Earth. The only places lacking indigenous ants are Antarctica and certain remote or inhospitable islands. Ants thrive in most ecosystems, and may form 15–25% of the terrestrial animal biomass. Their success has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Their long co-evolution with other species has led to mimetic, commensal, parasitic, and mutualistic relationships. Ant societies have division of labour, communication between individuals, and an ability to solve complex problems. These parallels with human societies have long been an inspiration and subject of study. Many human cultures make use of ants in cuisine, medication and rituals. Some species are valued in their role as biological pest control agents. However, their ability to exploit resources brings ants into conflict with humans, as they can damage crops and invade buildings. Some species, such as the red imported fire ant, are regarded as invasive species, since they have establish themselves in new areas where they may be accidentally introduced. Taxonomy and evolution. The family Formicidae belongs to the order Hymenoptera, which also includes sawflies, bees and wasps. Ants evolved from a lineage within the vespoid wasps. Phylogenetic analysis suggests that ants arose in the mid-Cretaceous period about 110 to 130 million years ago. After the rise of flowering plants about 100 million years ago they diversified and assumed ecological dominance around 60 million years ago. In 1966, E. O. Wilson and his colleagues identified the fossil remains of an ant ("Sphecomyrma freyi") that lived in the Cretaceous period. The specimen, trapped in amber dating back to more than 80 million years ago, has features of both ants and wasps. "Sphecomyrma" was probably a ground forager but some suggest on the basis of groups such as the Leptanillinae and Martialinae that primitive ants were likely to have been predators under the soil surface. During the Cretaceous period, only a few species of primitive ants ranged widely on the Laurasian super-continent (the northern hemisphere). They were scarce in comparison to other insects, representing about 1% of the insect population. Ants became dominant after adaptive radiation at the beginning of the Tertiary period. By the Oligocene and Miocene ants had come to represent 20–40% of all insects found in major fossil deposits. Of the species that lived in the Eocene epoch, approximately one in ten genera survive to the present. Genera surviving today comprise 56% of the genera in Baltic amber fossils (early Oligocene), and 92% of the genera in Dominican amber fossils (apparently early Miocene). Termites, though sometimes called "white ants", are not ants and belong to the order Isoptera. The termites are actually more closely related to cockroaches and mantids. The fact that ants and termites are both eusocial came about by Convergent evolution. Velvet ants look like large ants, but are wingless female wasps. Etymology. The word "ant" is derived from "ante" of Middle English which is derived from "æmette" and "emmett" of Old English and is related to the Old High German "āmeiza" from which comes "Ameise", the German word for ant. The family name "Formicidae" is derived from the Latin "formīca" ("ant") from which derived Portuguese "formiga", Spanish "hormiga", Romanian "furnică", French "fourmi", etc. Distribution and diversity. Ants are found on all continents except Antarctica and only a few large islands such as Greenland, Iceland, parts of Polynesia and the Hawaiian Islands lack native ant species. Ants occupy a wide range of ecological niches, and are able to exploit a wide range of food resources either as direct or indirect herbivores, predators and scavengers. Most species are omnivorous generalists but a few are specialist feeders. Their ecological dominance may be measured by their biomass, and estimates in different environments suggest that they contribute 15–20% (on average and nearly 25% in the tropics) of the total terrestrial animal biomass, which exceeds that of the vertebrates. Ants range in size from. Their colours vary; most are red or black, green is less common, and some tropical species have a metallic lustre. More than 12,000 species are currently known (with upper estimates of about 14,000), with the greatest diversity in the tropics. Taxonomic studies continue to resolve the classification and systematics of ants. Online databases of ant species, including AntBase and the Hymenoptera Name Server, help to keep track of the known and newly described species. The relative ease with which ants can be sampled and studied in ecosystems has made them useful as indicator species in biodiversity studies. Morphology. Ants are distinct in their morphology from other insects in having elbowed antennae, metapleural glands, and a strong constriction of their second abdominal segment into a node-like petiole. The head, mesosoma and metasoma or gaster are the three distinct body segments. The petiole forms a narrow waist between their mesosoma (thorax plus the first abdominal segment, which is fused to it) and gaster (abdomen less the abdominal segments in the petiole). The petiole can be formed by one or two nodes (the second alone, or the second and third abdominal segments). Like other insects, ants have an exoskeleton, an external covering that provides a protective casing around the body and a point of attachment for muscles, in contrast to the internal skeletons of humans and other vertebrates. Insects do not have lungs; oxygen and other gases like carbon dioxide pass through their exoskeleton through tiny valves called spiracles. Insects also lack closed blood vessels; instead, they have a long, thin, perforated tube along the top of the body (called the "dorsal aorta") that functions like a heart, and pumps haemolymph towards the head, thus driving the circulation of the internal fluids. The nervous system consists of a ventral nerve cord that runs the length of the body, with several ganglia and branches along the way reaching into the extremities of the appendages. An ant's head contains many sensory organs. Like most insects, ants have compound eyes made from numerous tiny lenses attached together. Ants' eyes are good for acute movement detection but do not give a high resolution. They also have three small ocelli (simple eyes) on the top of the head that detect light levels and polarisation. Compared to vertebrates, most ants have poor-to-mediocre eyesight and a few subterranean species are completely blind. Some ants such as Australia's bulldog ant, however, have exceptional vision. Two antennae ("feelers") are attached to the head; these organs detect chemicals, air currents and vibrations; they are also used to transmit and receive signals through touch. The head has two strong jaws, the mandibles, used to carry food, manipulate objects, construct nests, and for defence. In some species a small pocket (infrabuccal chamber) inside the mouth stores food, so it can be passed to other ants or their larvae. All six legs are attached to the mesosoma ("thorax"). A hooked claw at the end of each leg helps ants to climb and hang onto surfaces. Most queens and male ants have wings; queens shed the wings after the nuptial flight, leaving visible stubs, a distinguishing feature of queens. However, wingless queens (ergatoids) and males occur in a few species. The metasoma (the "abdomen") of the ant houses important internal organs, including those of the reproductive, respiratory (tracheae) and excretory systems. Workers of many species have their egg-laying structures modified into stings that are used for subduing prey and defending their nests. Polymorphism. In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major workers. Often the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. Such individuals are sometimes called "soldier" ants because their stronger mandibles make them more effective in fighting, although they are still workers and their "duties" typically do not vary greatly from the minor or median workers. In a few species the median workers are absent, creating a sharp divide between the minors and majors. Weaver ants, for example, have a distinct bimodal size distribution. Some other species show continuous variation in the size of workers. The smallest and largest workers in "Pheidologeton diversus" show nearly a 500-fold difference in their dry-weights. Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile haploid males. The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called "repletes". This polymorphism in morphology and behaviour of workers was initially thought to be determined by environmental factors such as nutrition and hormones which led to different developmental paths; however, genetic differences between worker castes have been noted in "Acromyrmex" sp. These polymorphisms are caused by relatively small genetic changes; differences in a single gene of "Solenopsis invicta" can decide whether the colony will have single or multiple queens. The Australian jack jumper ant ("Myrmecia pilosula"), has only a single pair of chromosomes (males have just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects. Development and reproduction. The life of an ant starts from an egg. If the egg is fertilised, the progeny will be female (diploid); if not, it will be male (haploid). Ants develop by complete metamorphosis with the larval stages passing through a pupal stage before emerging as an adult. The larva is largely immobile and is fed and cared for by workers. Food is given to the larvae by trophallaxis, a process in which an ant regurgitates liquid food held in its crop. This is also how adults share food, stored in the "social stomach", among themselves. Larvae may also be provided with solid food such as trophic eggs, pieces of prey and seeds brought back by foraging workers and may even be transported directly to captured prey in some species. The larvae grow through a series of moults and enter the pupal stage. The pupa has the appendages free and not fused to the body as in a butterfly pupa. The differentiation into queens and workers (which are both female), and different castes of workers (when they exist), is determined by the nutrition the larvae obtain. Larvae and pupae need to be kept at fairly constant temperatures to ensure proper development, and so are often moved around the various brood chambers within the colony. A new worker spends the first few days of its adult life caring for the queen and young. It then graduates to digging and other nest work, and later to defending the nest and foraging. These changes are sometimes fairly sudden, and define what are called temporal castes. An explanation for the sequence is suggested by the high casualties involved in foraging, making it an acceptable risk only for ants that are older and are likely to die soon of natural causes. Most ant species have a system in which only the queen and breeding females have the ability to mate. Contrary to popular belief, some ant nests have multiple queens while others can exist without queens. Workers with the ability to reproduce are called "gamergates" and colonies that lack queens are then called gamergate colonies; colonies with queens are said to be queen-right. The winged male ants, called drones, emerge from pupae along with the breeding females (although some species, like army ants, have wingless queens), and do nothing in life except eat and mate. During the short breeding period, the reproductives, excluding the colony queen, are carried outside where other colonies of similar species are doing the same. Then, all the winged breeding ants take flight. Mating occurs in flight and the males die shortly afterwards. Females of some species mate with multiple males. Mated females then seek a suitable place to begin a colony. There, they break off their wings and begin to lay and care for eggs. The females store the sperm they obtain during their nuptial flight to selectively fertilise future eggs. The first workers to hatch are weak and smaller than later workers, but they begin to serve the colony immediately. They enlarge the nest, forage for food and care for the other eggs. This is how new colonies start in most species. Species that have multiple queens may have a queen leaving the nest along with some workers to found a colony at a new site, a process akin to swarming in honeybees. Ant colonies can be long-lived. The queens can live for up to 30 years, and workers live from 1 to 3 years. Males, however, are more transitory, and survive only a few weeks. Ant queens are estimated to live 100 times longer than solitary insects of a similar size. Ants are active all year long in the tropics but, in cooler regions, survive the winter in a state of dormancy or inactivity. The forms of inactivity are varied and some temperate species have larvae going into the inactive state (diapause), while in others, the adults alone pass the winter in a state of reduced activity. Communication. Ants communicate with each other using pheromones. These chemical signals are more developed in ants than in other hymenopteran groups. Like other insects, ants perceive smells with their long, thin and mobile antennae. The paired antennae provide information about the direction and intensity of scents. Since most ants live on the ground, they use the soil surface to leave pheromone trails that can be followed by other ants. In species that forage in groups, a forager that finds food marks a trail on the way back to the colony; this trail is followed by other ants, these ants then reinforce the trail when they head back with food to the colony. When the food source is exhausted, no new trails are marked by returning ants and the scent slowly dissipates. This behaviour helps ants deal with changes in their environment. For instance, when an established path to a food source is blocked by an obstacle, the foragers leave the path to explore new routes. If an ant is successful, it leaves a new trail marking the shortest route on its return. Successful trails are followed by more ants, reinforcing better routes and gradually finding the best path. Ants use pheromones for more than just making trails. A crushed ant emits an alarm pheromone that sends nearby ants into an attack frenzy and attracts more ants from further away. Several ant species even use "propaganda pheromones" to confuse enemy ants and make them fight among themselves. Pheromones are produced by a wide range of structures including Dufour's glands, poison glands and glands on the hindgut, pygidium, rectum, sternum and hind tibia. Pheromones are also exchanged mixed with food and passed by trophallaxis, transferring information within the colony. This allows other ants to detect what task group ("e.g.", foraging or nest maintenance) other colony members belong to. In ant species with queen castes, workers begin to raise new queens in the colony when the dominant queen stops producing a specific pheromone. Some ants produce sounds by stridulation, using the gaster segments and their mandibles. Sounds may be used to communicate with colony members or with other species. Defence===. Ants attack and defend themselves by biting and, in many species, by stinging, often injecting or spraying chemicals like formic acid. Bullet ants ("Paraponera"), located in Central and South America, are considered to have the most painful sting of any insect, although it is usually not fatal to humans. This sting is given the highest rating on the Schmidt Sting Pain Index. The sting of Jack jumper ants can be fatal, and an antivenin has been developed. Fire ants, "Solenopsis" spp., are unique in having a poison sac containing piperidine alkaloids. Their stings are painful and can be dangerous to hypersensitive people. Trap-jaw ants of the genus "Odontomachus" are equipped with mandibles called trap-jaws, which snap shut faster than any other predatory appendages within the animal kingdom. One study of "Odontomachus bauri" recorded peak speeds of between 126 and 230 h (78 143 mph), with the jaws closing within 130 microseconds on average. The ants were also observed to use their jaws as a catapult to eject intruders or | A key'" is a device which is used to open a lock. A typical key consist of two parts: the "blade", which slides into the keyway of the lock and distinguishes between different keys, and the "bow", which is left protruding so that torque can be applied by the user. The blade is usually designed to open one specific lock, although master keys are designed to open sets of similar locks. Keys provide an inexpensive, though imperfect, method of authentication for access to properties like buildings and vehicles. As such, keys are an essential feature of modern living in the developed world, aing adorned by key fobs and known as a keychain. House keys. A house key'" is the most common sort of key. There are two main forms. The older form is for lever locks, where a pack of flat levers (typically between two and five) are raised to different heights by the key whereupon the slots or "'gates'" of the levers line up and permit a bolt to move back and forth, opening or closing the lock. The teeth or "'bittings'" of the key have flat tops rather than being pointed. Lever lock keys tend to be bigger and less convenient for carrying, although lever locks tend to be more secure. These are still common in, for example, many European countries. The more recent form is that for a pin tumbler cylinder lock. When held upright as if to open a door, a series of grooves on either side of the key (the key's "'profile'") limits the type of lock cylinder the key can slide into. As the key slides into the lock, a series of pointed teeth and notches allow pins to move up and down until those pins are in line with the shear line of the cylinder, allowing that cylinder to rotate freely inside the lock and the lock to open. These predominate in, for example, the United States of America. Car key. A "'car key'" or an "'automobile key'" is a key used to open and or start an automobile, often identified with the logo of the car company at the head. Modern key designs are usually symmetrical, and some use grooves on both sides, rather than a cut edge, to actuate the lock. It has multiple uses for the automobile with which it was sold. A car key can open the doors, as well as start the ignition, open the glove compartment and also open the trunk (boot) of the car. Some cars come with an additional key known as a "'valet key'" that starts the ignition and opens the drivers side door but prevents the valet from gaining access to valuables that are located in the trunk or the glove box. Some valet keys, particularly those to high-performance vehicles, go so far as to restrict the engine's power output to prevent joyriding. Recently, features such as coded immobilizers have been implemented in newer vehicles. More sophisticated systems make ignition dependent on electronic devices, rather than the mechanical keyswitch. Ignition switches locks are combined with security locking of the steering column (in many modern vehicles) or the gear lever (Saab Automobile). In the latter, the switch is between the seats, preventing damage to the driver's knee in the event of a collision. Keyless entry systems, which utilize either a door-mounted keypad or a remote control in place of a car key, are becoming a standard feature on many new cars. Some of them are handsfree. Some keys are high-tech in order to prevent the theft of a car. Mercedes-Benz uses a key that, rather than have a cut metal piece to start the car, uses an encoded infrared beam that communicates with the car's computer. If the codes match, the car can be started. These keys can be expensive to replace, if lost, and can cost up to US$400. Some car manufacturers like Land Rover and Volkswagen use a 'switchblade' key where the key is spring-loaded out of the fob when a button is pressed. This eliminates the need for a separate key fob. This type of key has also been known to be confiscated by airport security officials. Master key. A "'master key'" is intended to open a set of several locks. Usually, there is nothing special about the key itself, but rather the locks into which it will fit. These locks also have keys which are specific to each one (the "'change key'") and cannot open any of the others in the set. Locks which have master keys have a second set of the mechanism used to open them which is identical to all of the others in the set of locks. For example, master keyed pin tumbler locks will have two shear points at each pin position, one for the change key and one for the master key. A far more secure (and more expensive) system has two cylinders in each lock, one for the change key and one for the master key. Larger organizations, with more complex "grandmaster key" systems, may have several masterkey systems where the top level grandmaster key works in all of the locks in the system. A practical attack exists to create a working master key for an entire system given only access to a single master-keyed lock, its associated change key, a supply of appropriate key blanks, and the ability to cut new keys. This is described in Locksmiths may also determine cuts for a replacement master key, when given several different key examples from a given system. Control key. A "'control key'" is a special key used in removable core locking systems. The control key enables a user with very little skill to remove from the cylinder, quickly and easily, a core with a specific combination and replace it with a core with a different combination. In Small Format Interchangeable Cores (SFIC), similar to those developed by Frank Best of the Best Lock Corporation, the key operates a separate shear line, located above the operating key shear line. In Large Format Removable Cores, the key may operate a separate shear line or the key may work like a master key along the operating shear line and also contact a separate locking pin that holds the core in the cylinder. SFIC's are interchangeable from one brand to another, while LFRC's are not. Double-sided key. A "'double-sided key'" is very similar to a house or car key with the exception that it has two sets of teeth, an upper level standard set of teeth and a lower, less defined set of teeth beside it. This makes the double-sided key's profile and its corresponding lock look very similar to a standard key while making the attempt to pick the lock more difficult. As the name implies, this type of key has four sides, making it not only harder to duplicate and the lock harder to pick, but it is also physically more durable. Paracentric key. A "'paracentric key'" is designed to open a paracentric lock. It is distinguishable by the contorted shape of its blade, which protrudes past the centre vertical line of the key barrel. Instead of the wards on the outer face of the lock simply protruding into the shape of the key along the spine, the wards protrude into the shape of the key along the entire width of the key, including along the length of the teeth. Patented by the Yale lock company in 1898, paracentric cylinders are not exceptionally difficult to pick, but require some skill and know-how on the part of the person attempting to pick the lock. Skeleton key=== A "'skeleton key'" (or "'passkey'") is a very simple design of key which usually has a cylindrical shaft (sometimes called a "shank") and a single, minimal flat, rectangular tooth or "bit". Skeleton keys are also usually distinguished by their "bow", or the part one would grasp when inserting the key, which can be either very plain or extremely ornate. A skeleton key is designed to circumvent the wards in warded locks. Warded locks and their keys provide minimal security and only a slight deterrent as any key with a shaft and tooth that has the same or smaller dimensions will open the lock. However, warded keys were designed to only fit a matching lock and the skeleton key would often fit many. Many other objects which can fit into the lock may also be able to open it. Due to its limited usefulness, this type of lock fell out of use after more complicated types became easier to manufacture. In modern usage, the term "skeleton key" is often misapplied to ordinary bit keys and barrel keys, rather than the correct definition: a key, usually with minimal features, which can open all or most of a type of badly designed lock. Bit keys and barrel keys can be newly-minted (and sold by restoration hardware companies) or antiques. They were most popular in the late 1800s, although they continued to be used well into the 20th century and can still be found today in use, albeit in vintage homes and antique furniture. A bit key is distinguished from a barrel key in that a bit key usually has a solid shank, whereas a barrel shafted key can be made either by drilling out the shank from the bit end or by folding metal into a barrel shape when forging the key. Tubular key. A tubular key'" (sometimes referred to as a "barrel key" when describing a vintage or antique model) is one that is designed to open a tubular pin tumbler lock. It has a hollow, cylindrical shaft which is usually much shorter and has a larger diameter than most conventional keys. Antique or vintage-style barrel keys often closely resemble the more traditional "skeleton key" but are a more recent innovation in keymaking. In modern keys of this type, a number of grooves of varying length are built into the outer surface at the end of the shaft. These grooves are parallel to the shaft and allow the pins in the lock to slide to the end of the groove. A small tab on the outer surface of the shaft prevents the pins in the lock from pushing the key out and works with the hollow center to guide the key as it is turned. The modern version of this type of key is harder to duplicate as it is less common and requires a different machine from regular keys. These keys are most often seen in home alarm systems and bicycle locks, in the United States. Zeiss key. A Zeiss key'" (also known as a "'Cruciform key'") is a cross between a house key and a tubular key. It has three sets of teeth at 90 degrees to each other with a flattened fourth side. Though this type of key is easy to duplicate, the extra sets of teeth deter lockpicking attempts. Do Not Duplicate key. A "'Do Not Duplicate key'" (or "'DND key'", for short) is one which has been stamped "do not duplicate" and or "duplication prohibited" or similar by a locksmith or manufacturer as a passive deterrent to prevent a retail key cutting service from duplicating a key without authorization or without contacting the locksmith or manufacturer who originally cut the key. More importantly, this is an access control system for the owner of the key, such as a maintenance person or security guard, to identify keys that should not be freely distributed or used without authorization. Though it is intended to prevent unauthorized key duplication, copying restricted keys remains a common security problem. There is no direct legal implication in the US for someone who copies a key that is stamped "do not duplicate" (unless it is a government owned key), but there are patent restrictions on some key designs (see "restricted keys"). The Associated Locksmiths of America calls DND keys "not effective security", and "deceptive because it provides a false sense of security." United States Code deals with United States Post Office keys, and deals with United States Department of Defense keys. Restricted key. A restricted keyblank'" is a keyway and blank for which a manufacturer has set up a restricted level of sales and distribution. Restricted keys are often protected by patent, which prohibits other manufacturers from making unauthorized productions of the key blank. In many jurisdictions, customers must provide proof of ID before a locksmith will duplicate a key using a restricted blank. These days, many restricted keys have special in-laid features, such as magnets, different types of metal, or even small computer chips to prevent duplication. Keycard. A "'keycard'", while not actually considered a key, is a plastic card which stores a digital signature that is used with electronic access control locks. It is normally a flat, rectangular piece of plastic and may also serve as an ID card. There are several popular type of keycards in use and include the mechanical holecard, bar code, magnetic stripe, smart card (embedded with a read write electronic microchip), and RFID proximity cards. The keycard is used by presenting it to a card reader; swiping or inserting of mag stripe cards, or in the case of RFID cards, merely being brought into close proximity to a sensor. Bar code technology is not a secure form of a key, as the bar code can be copied in a photocopier and often read by the optical reader. Magnetic stripe keycards are becoming increasingly easy to copy, but have the security advantage that one may change the stored key in a magnetic swipe card in case the current key may be compromised. This immediate change of the "key" information can be applied to other media, but this media probably offers the least expensive option, and the most convenient to users and managers of systems that use this media. Example: If you own a car with this system, you can change your keys anytime you want. You can buy new media anywhere a gift card is sold. At least at this point in time, you could buy a gift card for a penny, then use that as the media for the keys to your car. If the system uses digital environmental data samples to create the "key" string, every car can have a set of keys that no one else has. If a card is stolen, or copied without authorization, the card can be remade, and the car security system can be synchronized with the new card, and no longer activationally responsive to the copy of the old card. This approach can empower the system controller (owner individual or centralized administration of a business). Computerized authentication systems, such as key cards, raise privacy concerns, since they enable computer surveillance of each entry. Currently RFID cards and key fobs are becoming more and more popular due to its ease of use. Many modern households have installed digital locks that make use of key cards, in combination with biometric fingerprint and keypad PIN options. The first keycard was the mechanical holecard type patented by Tor Sørnes, a concept he later developed into the magnetic stripe card key. History of locks and keys. Wooden locks and keys were in use as early as 4,000 years ago in Egypt. It is also said that key was invented by Theodore of Samos in the 6th century BC. In the United States, keys have been seen as a symbol of power since colonial times. When William Penn arrived in Delaware 1682, a very elaborate ceremony was carried out where he was given the key to the defense works. Flat metal keys proliferated in the early 20th century, following the introduction of mechanical key duplicators, which allow easy duplication of such keys. Key duplication. "'Key cutting (after cutting, the metalworking term for "shaping by removing material") is the primary method of key duplication: a flat key is fitted into a vise grip in a machine, with a blank attached to a parallel vise grip, and the original key is moved along a guide, while the blank is moved against a wheel, which cuts it. After cutting, the new key is deburred: scrubbed with a metal brush to remove burrs, small pieces of metal remaining on the key, which, were they not removed, would be dangerously sharp and, further, foul locks. Different key cutting machines are more or less automated, using different milling or grinding equipment, and follow the design of early 20th century key duplicators. Key duplication is available in many retail hardware stores and of course as a service of the specialized locksmith, though the correct key blank may not be available. Certain keys are designed to be difficult to copy, for access control, such as Medeco, while others are simply stamped Do Not Duplicate to advise that access control is requested, but in the US, this disclaimer has no legal weight. History of key duplication. A machine permitting rapid duplication of flat metal keys, which contributed to the proliferation of their use during the 20th century, may have been first invented in the United States in 1917 (image to the left): Keys in Heraldry. Keys appear in various symbols and coats of arms, the most well-known being that of the Vatican- derived from the story of Saint Peter, the first Pope, being given the Keys of Heaven. |