airplane |
truck |
top 10 words in brain distribution (in article): horse form plant bird build century body common time city |
top 10 words in brain distribution (in article): body time steel term type produce common modern size allow |
top 10 words in brain distribution (not in article): species wear type woman egg cell material clothe tree animal |
top 10 words in brain distribution (not in article): church bishop cell form iron blade head century pope roman |
times more probable under airplane 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under truck (words not in the model) | |
A fixed-wing aircraft'" is an aircraft capable of heavier-than-air flight whose lift is generated not by wing motion relative to the aircraft, but by forward motion through the air. The term is used to distinguish from rotary-wing aircraft or ornithopters, where the movement of the wing surfaces relative to the aircraft generates lift. In the United States and Canada, the term "'airplane'" is used; the term "'aeroplane'" is more common in the rest of the English-speaking countries, including Great Britain, the rest of the Commonwealth countries (excluding Canada), and the Republic of Ireland. These terms refer to any fixed wing aircraft powered by propellers or jet engines. The word derives from the Greek "αέρας" (aéras-) ("air") and "-plane". The spelling "aeroplane" is the older of the two, dating back to the mid-late 19th century. Some fixed-wing aircraft may be remotely or robot controlled. Overview. Fixed-wing aircraft range from small training and recreational aircraft to wide-body aircraft and military cargo aircraft. The word also embraces aircraft with folding or removable wings that are intended to fold when on the ground. This is usually to ease storage or facilitate transport on, for example, a vehicle trailer or the powered lift connecting the hangar deck of an aircraft carrier to its flight deck. It also embraces aircraft with "variable-sweep wings", such as the General Dynamics F-111, Grumman F-14 Tomcat and the Panavia Tornado, which can vary the sweep angle of their wings during flight. There are also rare examples of aircraft which can vary the angle of incidence of their wings in flight, such the F-8 Crusader, which are also considered to be "fixed-wing". The two necessities for fixed-wing aircraft are air flow over the wings for lifting of the aircraft, and an area for landing. The majority of aircraft, however, also need an airport with the infrastructure to receive maintenance, restocking, refueling and for the loading and unloading of crew, cargo and passengers. Some aircraft are capable of take off and landing on ice, aircraft carriers, snow, or calm water. The aircraft is the second fastest method of transport, after the rocket. Commercial jet aircraft can reach up to 1000 km h. Certified single-engined, piston-driven aircraft are capable of reaching up to 435 km h, while Experimental (modified WW II fighters) piston singles reach over 815 km h at the Reno Air Races. Supersonic aircraft (military, research and a few private aircraft) can reach speeds faster than sound. The speed record for a plane powered by an air-breathing engine is held by the experimental NASA X-43, which reached nearly ten times the speed of sound. The biggest aircraft built is the Antonov An-225, while the fastest still in production is the Mikoyan MiG-31. The biggest supersonic jet ever produced is the Tupolev Tu-160. Structure. The structure of a fixed-wing aircraft consists of the following major parts: Some varieties of aircraft, such as flying wing aircraft, may lack a discernible fuselage structure and horizontal or vertical stabilizers. Controls. A number of controls allow pilots to direct aircraft in the air. The controls found in a typical fixed-wing aircraft are as follows: The controls may allow full or partial automation of flight, such as an autopilot, a wing leveler, or a flight management system. Pilots adjust these controls to select a specific attitude or mode of flight, and then the associated automation maintains that attitude or mode until the pilot disables the automation or changes the settings. In general, the larger and or more complex the aircraft, the greater the amount of automation available to pilots. Control duplication. On an aircraft with a pilot and copilot, or instructor and trainee, the aircraft is made capable of control without the crew changing seats. The most common arrangement is two complete sets of controls, one for each of two pilots sitting side by side, but in some aircraft (military fighter aircraft, some taildraggers and aerobatic aircraft) the dual sets of controls are arranged one in front of the other. A few of the less important controls may not be present in both positions, and one position is usually intended for the pilot in command ("e.g.," the left "captain's seat" in jet airliners). Some small aircraft use controls that can be moved from one position to another, such as a single yoke that can be swung into position in front of either the left-seat pilot or the right-seat pilot (i.e. Beechcraft Bonanza). Aircraft that require more than one pilot usually have controls intended to suit each pilot position, but still with sufficient duplication so that all pilots can fly the aircraft alone in an emergency. For example, in jet airliners, the controls on the left (captain's) side include both the basic controls and those normally manipulated by the pilot in command, such as the tiller, whereas those of the right (first officer's) side include the basic controls again and those normally manipulated by the copilot, such as flap levers. The unduplicated controls that are required for flight are positioned so that they can be reached by either pilot, but they are often designed to be more convenient to the pilot who manipulates them under normal condition. Aircraft instruments. "Instruments" provide information to the pilot. "Flight instruments" provide information about the aircraft's speed, direction, altitude, and orientation. "Powerplant instruments" provide information about the the status of the aircraft's engines and APU. "Systems instruments" provide information about the aircraft's other systems, such as fuel delivery, electrical, and pressurization. "Navigation and communication instruments" include all the aircraft's radios. Instruments may operate mechanically or electrically, requiring 12VDC, 24VDC, or 400 Hz power systems. An aircraft that uses computerized CRT or LCD displays almost exclusively is said to have a "glass cockpit." Propulsion. Fixed-wing aircraft can be sub-divided according to the means of propulsion they use. Unpowered aircraft. Aircraft that primarily intended for unpowered flight include gliders (sometimes called sailplanes), hang gliders and paragliders. These are mainly used for recreation. After launch, the energy for sustained gliding flight is obtained through the skilful exploitation of rising air in the atmosphere. Gliders that are used for the sport of gliding have high aerodynamic efficiency. The highest lift-to-drag ratio is 70:1, though 50:1 is more common. Glider flights of thousands of kilometers at average speeds over 200 km h have been achieved. The glider is most commonly launched by a tow-plane or by a winch. Some gliders, called motor gliders, are equipped with engines (often retractable) and some are capable of self-launching. The most numerous unpowered aircraft are hang gliders and paragliders. These are foot-launched and are generally slower, less massive, and less expensive than sailplanes. Hang gliders most often have flexible wings which are given shape by a frame, though some have rigid wings. This is in contrast to paragliders which have no frames in their wings. Military gliders have been used in war to deliver assault troops, and specialized gliders have been used in atmospheric and aerodynamic research. Experimental aircraft and winged spacecraft have also made unpowered landings. Propeller aircraft. Smaller and older propeller aircraft make use of reciprocating internal combustion engines that turns a propeller to create thrust. They are quieter than jet aircraft, but they fly at lower speeds, and have lower load capacity compared to similar sized jet powered aircraft. However, they are significantly cheaper and much more economical than jets, and are generally the best option for people who need to transport a few passengers and or small amounts of cargo. They are also the aircraft of choice for pilots who wish to own an aircraft. Turboprop aircraft are a halfway point between propeller and jet: they use a turbine engine similar to a jet to turn propellers. These aircraft are popular with commuter and regional airlines, as they tend to be more economical on shorter journeys. Jet aircraft. Jet aircraft make use of turbines for the creation of thrust. These engines are much more powerful than a reciprocating engine. As a consequence, they have greater weight capacity and fly faster than propeller driven aircraft. One drawback, however, is that they are noisy; this makes jet aircraft a source of noise pollution. However, turbofan jet engines are quieter, and they have seen widespread usage partly for that reason. The jet aircraft was developed in Germany in 1931. The first jet was the Heinkel He 178, which was tested at Germany's Marienehe Airfield in 1939. In 1943 the Messerschmitt Me 262, the first jet fighter aircraft, went into service in the German Luftwaffe. In the early 1950s, only a few years after the first jet was produced in large numbers, the De Havilland Comet became the world's first jet airliner. However, the early Comets were beset by structural problems discovered after numerous pressurization and depressurization cycles, leading to extensive redesigns. Most wide-body aircraft can carry hundreds of passengers and several tons of cargo, and are able to travel for distances up to 17,000 km. Aircraft in this category are the Boeing 747, Boeing 767, Boeing 777, the upcoming Boeing 787 and Airbus A380, Airbus A300 A310, Airbus A330, Airbus A340, Airbus A380, Lockheed L-1011 TriStar, McDonnell Douglas DC-10, McDonnell Douglas MD-11, Ilyushin Il-86, and Ilyushin Il-96. Jet aircraft possess high cruising speeds (700 to 900 km h, or 400 to 550 mph) and high speeds for take-off and landing (150 to 250 km h). Due to the speed needed for takeoff and landing, jet aircraft make use of flaps and leading edge devices for the control of lift and speed, as well as thrust reversers to direct the airflow forward, slowing down the aircraft upon landing. Supersonic jet aircraft. Supersonic aircraft, such as military fighters and bombers, Concorde, and others, make use of special turbines (often utilizing afterburners), that generate the huge amounts of power for flight faster than the speed of the sound. Flight at supersonic speed creates more noise than flight at subsonic speeds, due to the phenomenon of sonic booms. This limits supersonic flights to areas of low population density or open ocean. When approaching an area of heavier population density, supersonic aircraft are obliged to fly at subsonic speed. Due to the high costs, limited areas of use and low demand there are no longer any supersonic aircraft in use by any major airline. The last Concorde flight was on 26 November 2003. Unmanned Aircraft. An aircraft is said to be 'unmanned' when there is no person in the cockpit of the plane. The aircraft is controlled only by remote controls or other electronic devices. Rocket-powered aircraft. Experimental rocket powered aircraft were developed by the Germans as early as World War II (see Me 163 Komet), and about 29 were manufactured and deployed. The first fixed wing aircraft to break the sound barrier in level flight was a rocket plane- the Bell X-1. The later North American X-15 was another important rocket plane that broke many speed and altitude records and laid much of the groundwork for later aircraft and spacecraft design. Rocket aircraft are not in common usage today, although rocket-assisted takeoffs are used for some military aircraft. SpaceShipOne is the most famous current rocket aircraft, being the testbed for developing a commercial sub-orbital passenger service; another rocket plane is the XCOR EZ-Rocket; and there is of course the Space Shuttle. Ramjet aircraft. A ramjet is a form of jet engine that contains no major moving parts and can be particularly useful in applications requiring a small and simple engine for high speed use, such as missiles. The D-21 Tagboard was an unmanned Mach 3+ reconnaissance drone that was put into production in 1969 for spying, but due to the development of better spy satellites, it was cancelled in 1971. The SR-71's Pratt & Whitney J58 engines ran 80% as ramjets at high speeds (Mach 3.2). The SR-71 was dropped at the end of the Cold War, then brought back during the 1990s. They were used also in the Gulf War. The last SR-71 flight was in October 2001. Scramjet aircraft. Scramjet aircraft are in the experimental stage. The Boeing X-43 is an experimental scramjet with a world speed record for a jet-powered aircraft Mach 9.7, nearly 12,000 km h (≈ 7,000 mph) at an altitude of about 36,000 meters (≈ 110,000 ft). The X-43A set the flight speed record on 16 November 2004. History. The dream of flight goes back to the days of pre-history. Many stories from antiquity involve flight, such as the Greek legend of Icarus and Daedalus, and the Vimana in ancient Indian epics. Around 400 BC, Archytas, the Ancient Greek philosopher, mathematician, astronomer, statesman, and strategist, was reputed to have designed and built the first artificial, self-propelled | A truck'" is a type of motor vehicle commonly used for carrying goods and materials. Some light trucks are relatively small, similar in size to a passenger automobile. Commercial transportation or fire trucks can be quite large and can also serve as a platform for specialized equipment. Etymology. The word "truck" possibly derives from the Greek "trochos" (τροχός =wheel). In North America, certain kinds of big wheels were called "trucks". When the gasoline-engine driven trucks came into fashion, these were called "motor trucks." International variance. In the United States and Canada "truck" is usually reserved for commercial vehicles larger than normal cars, and for pickups and other vehicles having an open load bed. In the United Kingdom and the Republic of Ireland, "lorry" is used as well as "truck", but only used for the medium and heavy types (see below); "i.e." a van, a pickup or an off-road four-wheel drive vehicle such as a Jeep would never be regarded as a lorry in these countries, unlike in the United States (it should be noted, however, that the term lorry is not used in the United States). The same applies to the initials "HGV" (for Heavy Goods Vehicle) which is basically synonymous with "lorry". The word "truck" is also accepted in these countries, and can apply to large vans as well as to lorries ("i.e." its scope is slightly wider). In the UK vernacular, "wagon" is still commonly used to describe various larger vehicles. Though the US term station wagon is occasionally used in the UK, it can cause confusion (despite retaining the US definition), so the societal term estate car remains widely popular. "Lorry" is also used in Hong Kong. In South Africa, the word "kombi" is used, based on its Afrikaans equivalent. The word "lorry" is also used in Cambodia, although here it can refer to a train. In Australia and New Zealand, a pickup truck (a relatively small, usually car- or van-derived vehicle, with an open back body) is called a ute'" (short for "utility") and the word "truck" or "lorry" is reserved for larger vehicles. Other languages have loanwords based on these terms, such as the Malay language and the Spanish language in northern Mexico. A commonly understood term for truck across many European countries is "'camion'". Camion is also used in Quebec to identify trucks in French. Additionally, from the German language the initials "PKW" ("'P'"ersonen"'K'"raft"'W'"agen or passenger carrying vehicle) for a car van or small truck) and "LKW" ("'L'"ast"'K'"raft"'W'"agen or cargo load freight carrying vehicle) for larger trucks are understood. In U.S. English the word "truck" is used in the names of particular types of truck, such as a "fire truck" or "tanker truck". Note that in British English these would be a "fire engine" and "tanker" respectively. Driving. In the United States a commercial driver's license is required to drive any type of vehicle weighing 26,001 lbs (11,800 kg) or more. In the United Kingdom there are complex rules; as an overview, to drive a vehicle weighing more than 7,500 kg for commercial purposes requires a specialist license (the type varies depending on the use of the vehicle and number of seats). For licenses first acquired after 1997, that weight was reduced to 3,500 kg, not including trailers. In the Australia a truck driving license is required for any motor vehicle with a GVM exceeding 4500 kg. The motor vehicles classes are further expanded as "'LR/MR'" (Light Medium rigid up to 8000 kg GVM + trailer to maximum GCM 8000 kg), "'HR'" (Heavy Rigid +trailer up to GCM 9000 kg), "'HC'" (Heavy Combination, a typical prime mover +semi trailer combination) and the "'MC'" (Multi Combination e.g B Doubles Road trains). There is also a heavy vehicle transmission condition for a licence class HR, HC or MC in a vehicle fitted with an automatic or synchromesh transmission, driver’s licence will restrict to vehicles of that class fitted with a synchromesh or automatic transmission. To have the condition removed, a person needs to pass a practical driving test in a vehicle with non synchromesh transmission (constant mesh or crash box). Engine. The oldest truck was built in 1896 by Gottlieb Daimler. Small trucks such as SUVs or pickups, and even light medium-duty trucks in North America and Russia will use gasoline engines. Most heavier trucks use four stroke turbo intercooler diesel engines. Huge off-highway trucks use locomotive-type engines such as a V12 Detroit Diesel two stroke engine. North American manufactured highway trucks almost always use an engine built by a third party, such as CAT, Cummins, or Detroit Diesel. The only exceptions to this are Volvo and its subsidiary Mack Trucks, which are available with their own engines. Freightliner Trucks, Sterling Trucks and Western Star, subsidiaries of Daimler AG, are available with Mercedes-Benz and Detroit Diesel engines. Trucks and buses built by Navistar International usually also contain International engines. The Swedish manufacturer Scania claims they stay away from the U.S. market because of this third party tradition. In the European Union all new truck engines must comply with Euro 5 regulations. Drivetrain. Small trucks use the same type of transmissions as almost all cars, having either an automatic transmission or a manual transmission with synchronisers. Bigger trucks often use manual transmissions without synchronisers, saving bulk and weight, although synchromesh transmissions are used in larger trucks as well. Transmissions without synchronizers, known as "crash boxes", require double-clutching for each shift, (which can lead to repetitive motion injuries), or a technique known colloquially as "floating," a method of changing gears which doesn't use the clutch, except for starts and stops, due to the physical effort of double clutching, especially with non power assisted clutches, faster shifts, and less clutch wear. Double-clutching allows the driver to control the engine and transmission revolutions to synchronize, so that a smooth shift can be made, "e.g.," when upshifting, the accelerator pedal is released and the clutch pedal is depressed while the gear lever is moved into neutral, the clutch pedal is then released and quickly pushed down again while the gear lever is moved to the next highest gear. Finally, the clutch pedal is released and the accelerator pedal pushed down to obtain required engine speed. Although this is a relatively fast movement, perhaps a second or so while transmission is in neutral, it allows the engine speed to drop and synchronize engine and transmission revolutions relative to the road speed. Downshifting is performed in a similar fashion, except the engine speed is now required to increase (while transmission is in neutral) just the right amount in order to achieve the synchronization for a smooth, non-collision gear change. "Skip changing" is also widely used; in principle operation is the same as double-clutching, but it requires neutral be held slightly longer than a single gear change. Common North American setups include 9, 10, 13, 15, and 18 speeds. Automatic and semi-automatic transmissions for heavy trucks are becoming more and more common, due to advances both in transmission and engine power. In Europe 8, 10, 12 and 16 gears are common on larger trucks with manual transmission, while automatic or semiautomatic transmissions would have anything from 5 to 12 gears. Almost all heavy truck transmissions are of the "range and split" (double H shift pattern) type, where range change and so-called half gears or splits are air operated and always preselected before the main gear selection. More new trucks in Europe are being sold with automatic or semi-automatic transmissions. This may be due the fuel consumption can be lowered and truck durability improved. The primary reason perhaps is the fact that such transmissions give a driver more time to concentrate on the road and traffic conditions. Frame. A truck frame consists of two parallel boxed (tubular) or C-shaped rails, or beams, held together by crossmembers. These frames are referred to as ladder frames due to their resemblance to a ladder if tipped on end. The rails consist of a tall vertical section (two if boxed) and two shorter horizontal flanges. The height of the vertical section provides opposition to vertical flex when weight is applied to the top of the frame (beam resistance). Though typically flat the whole length on heavy duty trucks, the rails may sometimes be tapered or arched for clearance around the engine or over the axles. The holes in rails are used either for mounting vehicle components and running wires and hoses, or measuring and adjusting the orientation of the rails at the factory or repair shop. Though they may be welded, crossmembers are most often attached to frame rails by bolts or rivets. Crossmembers may be boxed or stamped into a c-shape, but are most commonly boxed on modern vehicles, particularly heavy trucks. The frame is almost always made of steel, but can be made (whole or in part) of aluminum for a lighter weight. A tow bar may be found attached at one or both ends, but heavy trucks almost always make use of a fifth wheel hitch. Environmental effects. Trucks contribute to air, noise, and water pollution similarly to automobiles. Trucks may emit lower air pollution emissions than cars per pound of vehicle mass, although the absolute level per vehicle mile traveled is higher and diesel particulate matter is especially problematic for health. With respect to noise pollution trucks emit considerably higher sound levels at all speeds compared to typical car; this contrast is particularly strong with heavy-duty trucks. There are several aspects of truck operations that contribute to the overall sound that is emitted. Continuous sounds are those from tires rolling on the roadway and the constant hum of their diesel engines at highway speeds. Less frequent noises, but perhaps more noticeable, are things like the repeated sharp whine of a turbocharger on acceleration or the abrupt blare of an exhaust brake when traversing a downgrade. There has been noise regulation put in place to help control where and when the use of engine braking is allowed. Concerns have been raised about the effect of trucking on the environment, particularly as part of the debate on global warming. In the period from 1990 to 2003, carbon dioxide emissions from transportation sources increased by 20%, despite improvements in vehicle fuel efficiency. In 2005, transportation accounted for 27% of U.S. greenhouse gas emission, increasing faster than any other sector. Between 1985 and 2004, in the U.S., energy consumption in freight transportation grew nearly 53%, while the number of ton-miles carried increased only 43%. "Modal shifts account for a nearly a 23% increase in energy consumption over this period. Much of this shift is due to a greater fraction of freight ton-miles being carried via truck and air, as compared to water, rail, and pipelines." According to a 1995 U.S. Government estimate, the energy cost of carrying a ton of freight a distance of one kilometer averages 337 kJ for water, 221 kJ for rail, 2 000 kJ for trucks and nearly 13 000 kJ for air transport. Many environmental organizations favor laws and incentives to encourage the switch from road to rail, especially in Europe. The European Parliament is moving to ensure that charges on heavy-goods vehicles should be based in part on the air and noise pollution they produce and the congestion they cause, according to legislation approved by the Transport Committee The Eurovignette scheme has been proposed whereby new charges would be potentially levied against things such as noise and air pollution and also weight related damages from the lorries themselves Commercial insurance. Primary Liability Insurance coverage protects the truck from damage or injuries to other people as a result of a truck accident. This truck insurance coverage is mandated by U.S. state and federal agencies and proof of coverage is required to be sent to them. Insurance coverage limits range from $35,000 to $1,000,000. Pricing is dependent on region, driving records, and history of the trucking operation. Motor Truck Cargo insurance protects the transporter for his responsibility in the event of damaged or lost freight. The policy is purchased with a maximum load limit per vehicle. Cargo insurance coverage limits can range from $10,000 to $100,000 or more. Pricing for this insurance is mainly dependent on the type of cargo being hauled. Truck shows. In the UK, three truck shows are popular -Shropshire Truck Show in Oswestry Showground during May, The UK Truck Show held in June at Santa Pod Raceway and FIA European Drag Racing Championships from the home of European Drag-Racing. The UK Truck Show features drag-racing with 6-ton trucks from the British Truck Racing Association, plus other diesel-powered entertainment. Truck Shows provide operators with an opportunity to win awards for their trucks. |