window |
refrigerator |
top 10 words in brain distribution (in article): material wood build design wall structure size type construction window |
top 10 words in brain distribution (in article): light water design build drink type time size allow provide |
top 10 words in brain distribution (not in article): paint card floor tree require concrete brick power manufacture service |
top 10 words in brain distribution (not in article): material wood lamp card form wine power record wall structure |
times more probable under window 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under refrigerator (words not in the model) | |
Pair of windows, Old Ship Church, Hingham, Massachusetts A window'" is an opening in a wall (or other solid and opaque surface) that allows the passage of light and, if not closed or sealed, air and sound. Windows are usually glazed or covered in some other transparent or translucent material. Windows are held in place by frames, which prevent them from collapsing in. Etymology. The word "Window" originates from the Old Norse ‘vindauga’, from ‘vindr – wind’ and ‘auga – eye’, i.e. "wind eye". In Norwegian Nynorsk and Icelandic the Old Norse form has survived to this day (in Icelandic only as a less used synonym to "gluggi"), while Swedish has kept it—mostly in dialects—as ‘vindöga’ (‘öga – eye’). Danish ‘vindue’ and Norwegian Bokmål ‘vindu’ however, have lost the direct link to ‘eye’, just like "window" has. The Danish (but not the Bokmål) word is pronounced fairly similar to "window". "Window" is first recorded in the early 13th century, and originally referred to an unglazed hole in a roof. "Window" replaced the Old English ‘eagþyrl’, which literally means ‘eye-hole,’ and ‘eagduru’ ‘eye-door’. Many Germanic languages however adopted the Latin word ‘fenestra’ to describe a window with glass, such as standard Swedish ‘fönster’, or German ‘Fenster’. The use of "window" in English is probably due to the Scandinavian influence on the English language by means of loanwords during the Viking Age. In English the word "fenester" was used as a parallel until the mid-1700s and "fenestration" is still used to describe the arrangement of windows within a façade. Types in history. Primitive windows were just holes. Later, windows were covered with animal hide, cloth, or wood. Shutters that could be opened and closed came next. Over time, windows were built that both protected the inhabitants from the elements and transmitted light: mullioned glass windows, which joined multiple small pieces of glass with leading, paper windows, flattened pieces of translucent animal horn, and plates of thinly sliced marble. The Romans were the first to use glass for windows. In Alexandria ca. 100 AD, cast glass windows, albeit with poor optical properties, began to appear. Mullioned glass windows were the windows of choice among European well-to-do, whereas paper windows were economical and widely used in ancient China, Korea, Japan. In England, glass became common in the windows of ordinary homes only in the early 17th century whereas windows made up of panes of flattened animal horn were used as early as the 14th century in Northern Britain. Modern-style floor-to-ceiling windows became possible only after the industrial glass making process was perfected. Evidence of glass window panes in Italy dates back nearly 3000 years. Double-hung sash window. This sash window is the traditional style of window in the USA, and many other places that were formerly colonized by the UK, with two parts (sashes) that overlap slightly and slide up and down inside the frame. The two parts are not necessarily the same size. Nowadays, most new double-hung sash windows use spring balances to support the sashes, but traditionally, counterweights held in boxes either side of the window were used. These were and are attached to the sashes using pulleys of either braided cord or, later, purpose-made chain. Double-hung sash windows were traditionally often fitted with shutters. Sash windows may be fitted with simplex hinges which allow the window to be locked into hinges on one side, while the rope on the other side is detached, allowing the window to be opened for escape or cleaning. Single-hung sash window. One sash is movable (usually the bottom one) and the other fixed. This is the earlier form of sliding sash window, and is obviously also cheaper. Horizontal sliding sash window. Has two or more sashes that overlap slightly but slide horizontally within the frame. In the UK, these are sometimes called "Yorkshire" sash windows, presumably because of their traditional use in that county. Casement window. A window with a hinged sash that swings in or out like a door comprising either a side-hung, top-hung (also called "awning window"; see below), or occasionally bottom-hung sash or a combination of these types, sometimes with fixed panels on one or more sides of the sash. In the USA these are usually opened using a crank, but in Europe they tend to use projection friction stays and espagnolette locking. Formerly, plain hinges were used with a casement stay. Handing applies to casement windows to determine direction of swing. Awning window. An awning window is a casement window that is hung horizontally, hinged on top, so that it swings outward like an awning. Hopper window. A hopper window is a bottom hung casement window that opens similar to a draw bridge typically opening to the outside. Tilt and slide. A window (more usually a door-sized window) where the sash tilts inwards at the top and then slides horizontally behind the fixed pane. Tilt and turn. A window which can either tilt inwards at the top, or can open inwards hinged at the side. Transom window. A window above a door; if an exterior door the transom window is often fixed, if an interior door it can often open either by hinges at top or bottom, or can rotate about hinges at the middle of its sides. It provided ventilation before forced air heating and cooling. A transom may also be known as a fanlight, especially if it is fan-shaped, particularly in the British Isles. Jalousie window. Also known as a louvered window, the jalousie window is comprised of parallel slats of glass or acrylic that open and close like a Venetian blind, usually using a crank or a lever. They are used extensively in tropical architecture. A jalousie door is a door with a jalousie window. Clerestory window. A vertical window set in a roof structure or high in a wall, used for daylighting. Skylight. A flat or sloped window used for daylighting, built into a roof structure that is out of reach. Roof Window. A sloped window used for daylighting, built into a roof structure that is within reach. Roof Lantern or Cupola. A roof lantern is a multi-paned glass structure, resembling a small building, built on a roof for day or moon light. Sometimes includes an additional clerestory. May also be called a cupola. Bay window. A multi-panel window, with at least three panels set at different angles to create a protrusion from the wall line.it is commonly used in cold country where snow often falls. The panels are thus set in three different directions,from where a person would have a view from the interior of a building. Oriel window. A window with many panels. It is most often seen in the typical Tudor-style house and monasterie. An oriel window projects from the wall and does not extend to the ground. Oriel windows originated as a form of porch. They are often supported by brackets or corbels. Buildings in the Gothic Revival style often have oriell windows. Thermal window. Thermal, or Diocletian, windows are large semicircular windows (or niches) which are usually divided into three lights (window compartments) by two vertical mullions. The central compartment is often wider than the two side lights on either side of it. Fixed window. A window that cannot be opened, whose function is limited to allowing light to enter. Clerestory windows are often fixed. Transom windows may be fixed or operable. Picture window. A very large fixed window in a wall, typically without glazing bars, or glazed with only perfunctory glazing bars near the edge of the window. Picture windows are intended to provide an unimpeded view, as if framing a picture. Multi-lit window /divided-lite window. A window glazed with small panes of glass separated by wooden or lead "glazing bars", or "muntins", arranged in a decorative "glazing pattern" often dictated by the architectural style at use. Due to the historic unavailability of large panes of glass, this was the prevailing style of window until the beginning of the twentieth century, and is traditionally still used today. Emergency exit window /egress window. A window big enough and low enough so that occupants can escape through the opening in an emergency, such as a fire. In the United States, exact specifications for emergency windows in bedrooms are given in many building codes. Vehicles, such as buses and aircraft, frequently have emergency exit windows as well. Stained glass window. A window composed of pieces of colored glass, transparent or opaque, frequently portraying persons or scenes. Typically the glass in these windows is separated by lead glazing bars. Stained glass windows were popular in Victorian houses and some Wrightian houses, and are especially common in churches. French window. A French window, also known as a "French door" is really a type of door, but one which has one or more panes of glass set into the whole length of the door, meaning it also functions as a window. Super window. A popular term for highly insulating window with a heat loss so low it performs better than an insulated wall in winter, since the sunlight that it admits is greater than its heat loss over a 24 hour period. Technical terms. In insulated glass production, the term "lite" refers to a glass pane, several of which may be used to construct the final window product. For example, a sash unit, consisting of at least one sliding glass component, is typically composed of two lites, while a fixed window is composed of one lite. The terms "single-light", "double-light" etc refer to the number of these glass panes in a window. The lites in a window sash are divided horizontally and vertically by narrow strips of wood or metal called muntins. More substantial load bearing or structural vertical dividers are called mullions, with the corresponding horizontal dividers referred to as transoms. In the USA, the term "replacement window" means a framed window designed to slip inside the original window frame from the inside after the old sashes are removed. In Europe, however, it usually means a complete window including a replacement outer frame. The USA term "new construction window" means a window with a nailing fin designed to be inserted into a rough opening from the outside before applying siding and inside trim. A nailing fin is a projection on the outer frame of the window in the same plane as the glazing, which overlaps the prepared opening, and can thus be 'nailed' into place). In the UK and Europe, windows in new-build houses are usually fixed with long screws into expanding plastic plugs in the brickwork. A gap of up to 13mm is left around all four sides, and filled with expanding polyurethane foam. This makes the window fixing weatherproof but allows for expansion due to heat. A beam over the top of a window is known as the lintel or transom. In the USA, the NRFC Window Label lists the following terms: Window construction. Windows can be a significant source of heat transfer. Insulated glazing units therefore consist of two or more panes to reduce the heat transfer. Frame and sash construction. Frames and sashes can be made of the following materials: Composites may combine materials to obtain aesthetics of one material with the functional benefits of another. Glazing and filling. Low-emissivity coated panes reduce heat transfer by radiation, which, depending on which surface is coated, helps prevent heat loss (in cold climates) or heat gains (in warm climates). High thermal resistance can be obtained by evacuating or filling the insulated glazing units with gases such as argon or krypton, which reduces conductive heat transfer due to their low thermal conductivity. Performance of such units depends on good window seals and meticulous frame construction to prevent entry of air and loss of efficiency. Modern windows are usually glazed with one large sheet of glass per sash, while windows in the past were glazed with multiple panes separated by "glazing bars", or "muntins", due to the unavailability of large sheets of glass. Today, glazing bars tend to be decorative, separating windows into small panes of glass even though larger panes of glass are available, generally in a pattern dictated by the architectural style at use. Glazing bars are typically wooden, but occasionally lead glazing bars soldered in place are used for more intricate glazing patterns. Other construction details. Many windows have movable window coverings such as blinds or curtains to keep out light, provide additional insulation, or ensure privacy. Sun incidence angle. Historically, windows are designed with surfaces parallel to vertical building walls. Such a design allows considerable solar light and heat penetration due to the most commonly occurring incidence of sun angles. In passive solar building design, an extended eave is typically used to control the amount of solar light and heat entering the window(s). An alternate method would be to calculate a more optimum angle for mounting windows which accounts for summer sun load minimization, with consideration of the actual latitude of the particular building. An example where this process has been implemented is the Dakin Building, Brisbane, California; much of the fenestration has been designed to reflect summer heat load and assist in preventing summer interior over-illumination and glare, by designing window canting to achieve a near 45 degree angle. Solar window. Solar windows not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help generate electricity for the building. Windows and religion. The symbolism of windows plays a part in the customs and traditions of certain religions. | A refrigerator'" (often called a "'fridge'" for short) is a cooling appliance comprising a thermally insulated compartment and a heat pump: a mechanism to transfer heat from it to the external environment, cooling the contents to a temperature below ambient. Refrigerators are extensively used to store foods which deteriorate at ambient temperatures; spoilage from bacterial growth and other processes is much slower at low temperatures. A device described as a "refrigerator" maintains a temperature a few degrees above the freezing point of water; a similar device which maintains a temperature below the freezing point of water is called a "'freezer'". The refrigerator is a relatively modern invention among kitchen appliances. It replaced the icebox, which had been a common household appliance for almost a century and a half prior. For this reason, a refrigerator is sometimes referred to as an "icebox". Freezers keep their contents frozen. They are used both in households and for commercial use. Most freezers operate around minus 18 °C (0 °F). Domestic freezers can be included as a compartment in a refrigerator, sharing the same mechanism or with a separate mechanism, or can be standalone units. Domestic freezers are generally upright units, resembling refrigerators, or chests, resembling upright units laid on their backs. Many modern freezers come with an icemaker. Commercial fridge and freezer units, which go by many other names, were in use for almost 40 years prior to the common home models. They used toxic ammonia gas systems, making them unsafe for home use. Practical household refrigerators were introduced in 1915 and gained wider acceptance in the United States in the 1930s as prices fell and non-toxic, non-flammable synthetic refrigerants such as Freon or R-12 were introduced. It is notable that while 60% of households in the US owned a refrigerator by the 1930s, it was not until 40 years later, in the 1970s, that the refrigerator achieved a similar level of penetration in the United Kingdom. History. Before the invention of the refrigerator, icehouses were used to provide cool storage for most of the year. Placed near freshwater lakes or packed with snow and ice during the winter, they were once very common. Using the environment to cool foodstuffs is still common today. On mountainsides, runoff from melting snow higher up is a convenient way to cool drinks, and during the winter months simply placing milk outside is sufficient to greatly extend its useful life. In the 11th century, the Persian physicist and chemist, Ibn Sina (Avicenna), invented the refrigerated coil, which condenses aromatic vapours. This was a breakthrough in distillation technology and he made use of it in his steam distillation process, which requires refrigerated tubing, to produce essential oils. The first known artificial refrigeration was demonstrated by William Cullen at the University of Glasgow in 1748. Between 1805, when Oliver Evans designed the first refrigeration machine that used vapor instead of liquid, and 1902 when Willis Haviland Carrier demonstrated the first air conditioner, scores of inventors contributed many small advances in cooling machinery. In 1850 or 1851, Dr. John Gorrie demonstrated an ice maker. In 1857, Australian James Harrison introduced vapor-compression refrigeration to the brewing and meat packing industries. Ferdinand Carré of France developed a somewhat more complex system in 1859. Unlike earlier compression-compression machines, which used air as a coolant, Carré's equipment contained rapidly expanding ammonia. The absorption refrigerator was invented by Baltzar von Platen and Carl Munters in 1922, while they were still students at the Royal Institute of Technology in Stockholm, Sweden. It became a worldwide success and was commercialized by Electrolux. Other pioneers included Charles Tellier, David Boyle, and Raoul Pictet. At the start of the 20th Century, about half of households in the United States relied on melting ice (in an icebox) to keep food cold, while the remaining half had no cooled storage at all. The ice used for household storage was expensive because ice had to be cut from winter ponds (or mechanically produced), stored centrally until needed, and delivered regularly. In a few exceptional cases, mechanical refrigeration systems had been adapted by the start of the 20th century for use in the homes of the very wealthy, and might be used for cooling both living and food storage areas. One early system was installed at the mansion of Walter Pierce, an oil company executive. Marcel Audiffren of France championed the idea of a refrigerating machine for cooling and preserving foods at home. His U.S. patents, issued in 1895 and 1908, were purchased by the American Audiffren Refrigerating Machine Company. Machines based on Audiffren's sulfur dioxide process were manufactured by General Electric in Fort Wayne, Indiana and marketed by the Johns-Manville company. The first unit was sold in 1911. Audiffren machines were expensive, selling for about $1,000 — about twice as much as the cost of an automobile at that time. General Electric sought to develop refrigerators of its own, and in 1915 the first "Guardian" unit was assembled in a back yard wash house as a predecessor to the Frigidaire. In 1916 Kelvinator and Servel introduced two units among a field of competing models. This number increased to 200 by 1920. In 1918, Kelvinator had a model with automatic controls. These home units usually required the installation of the mechanical parts, motor and compressor, in the basement or an adjacent room while the cold box was located in the kitchen. There was a 1922 model that consisted of a wooden cold box, water-cooled compressor, an ice cube tray and a 9 cubic foot compartment for $714. (A 1922 Model-T Ford cost about $450.) In 1923 Frigidaire introduced the first self-contained unit. About this same time porcelain covered metal cabinets began to appear. Ice cube trays were introduced more and more during the 1920s; up to this time freezing was not a function of the modern refrigerator. The first refrigerator to see widespread use was the General Electric "Monitor-Top" refrigerator introduced in 1927. The compressor assembly, which emitted a substantial amount of heat, was placed above the cabinet, and surrounded with a decorative ring. Over 1,000,000 units were produced. As the refrigerating medium, these refrigerators used either sulfur dioxide, which is corrosive to the eyes and may cause loss of vision, painful skin burns and lesions, or methyl formate, which is highly flammable, harmful to the eyes, and toxic if inhaled or ingested. Many of these units are still functional today. These cooling systems cannot be recharged with the hazardous original refrigerants if they leak or break down. The introduction of freon expanded the refrigerator market during the 1930s, and freezer units became more common during the 1940s. Home units did not go into mass production until after WWII. The 1950s and 1960s saw technical advances like automatic defrosting and automatic ice making. Developments of the 1970s and 80s brought about more efficient refrigerators, and environmental issues banned the use of CFC (freon) refrigerants used in sealed systems. Early refrigerator models (1916 and on) featured a cold compartment for ice cube trays. Successful processing of fresh vegetables through freezing began in the late 1920s by the Postum Company (the forerunner of General Foods) which had acquired the technology when it bought the rights to Clarence Birdseye's successful fresh freezing methods. The first successful example of the benefits of frozen foods occurred when General Foods heiress Marjorie Merriweather Post (then wife of Joseph E. Davies, United States Ambassador to the Soviet Union) deployed commercial-grade freezers to Spaso House, the US Embassy in Moscow in advance of the Davies’ arrival. Post, fearful of the food processing safety observed in the USSR, then fully stocked the freezers with products from General Foods' Birdseye unit. The frozen food stores allowed the Davies to lavishly entertain and serve fresh frozen foods that would otherwise be out of season. Upon returning from Moscow, Post (who resumed her maiden name after divorcing Davies) directed General Foods to market frozen product to upscale restaurants. Introduction of home freezer units occurred in the United States in 1940, and frozen foods began to make the transition from luxury to necessity. Design. Refrigerators work by the use of heat pumps operating in a refrigeration cycle. An industrial refrigerator is simply a refrigerator used in an industrial setting, usually in a restaurant or supermarket. It may consist of either a cooling compartment only (a larger refrigerator) or a freezing compartment only (a freezer) or both. The industry sometimes refers to such units as a “cold box” or a “walk-in.” The dual compartment was introduced commercially by General Electric in 1939. The vapor compression cycle is used in most household refrigerators. In this cycle, a circulating refrigerant such as R134a enters the compressor as a low-pressure vapor at its boiling point. The vapor is compressed and exits the compressor as a superheated high-pressure vapor. The superheated vapor travels through part of the condenser which removes the superheat by cooling the vapor. The vapor travels through the remainder of the condenser and is condensed into a liquid at its boiling point. Before the refrigerant leaves the condenser it will have been subcooled (i.e. below its boiling point). The subcooled liquid refrigerant passes through the metering (or throttling) device where its pressure abruptly decreases. The decrease in pressure results in the flash evaporation and auto-refrigeration of a portion of the liquid (typically, less than half of the liquid flashes). The cold and partially vaporized refrigerant travels through the coil or tubes in the evaporator. There, a fan circulates room air across the coil or tubes, and the refrigerant is totally vaporized, extracting heat from the air which is then returned to the food compartment. The refrigerant vapor, now slightly superheated, returns to the compressor inlet to continue the thermodynamic cycle. An absorption refrigerator works differently from a compressor refrigerator, using a source of heat, such as combustion of liquefied petroleum gas, or solar thermal energy. These heat sources are much quieter than the compressor motor in a typical refrigerator. The Peltier effect uses electricity directly to pump heat; refrigerators using this effect are sometimes used for camping, or where noise is not acceptable. They are totally silent, but less energy-efficient than other methods. Other uses of an absorption refrigerator (or "chiller") would include large systems used in office buildings or complexes such as hospitals and universities. These large systems are used to chill a brine solution that is circulated through the building. Other alternatives to the vapor-compression cycle but not in current use include thermionic, vortex tube, air cycle, magnetic cooling, Stirling cycle, Malone refrigeration, acoustic cooling, pulse tube and water cycle systems. Features. Early freezer units accumulated ice crystals around the freezing units. This was a result of humidity introduced into the units when the doors to the freezer were opened. This frost buildup required periodic thawing ("defrosting") of the units to maintain their efficiency. Advances in automatic defrosting eliminating the thawing task were introduced in the 1950s. Also, early units featured freezer compartments located within the larger refrigerator, and accessed by opening the refrigerator door, and then the smaller internal freezer door; units featuring entirely separate freezer compartment were introduced in the early 1960s, becoming the industry standard by the middle of that decade. Later advances included automatic ice units and self compartmentalized freezing units. An increasingly important environmental concern is the disposal of old refrigerators- initially because of the freon coolant damaging the ozone layer, but as the older generation of refrigerators disappears it is the destruction of CFC-bearing insulation which causes concern. Modern refrigerators usually use a refrigerant called HFC-134a (1,2,2,2-tetrafluoroethane), which has no ozone layer depleting properties, in place of freon. Disposal of discarded refrigerators is regulated, often mandating the removal of doors: children playing hide-and-seek have been asphyxiated while hiding inside a discarded refrigerator. This was particularly true for the older models that had latching doors. More modern units use a magnetic door gasket to hold the door sealed but can be pushed open from the inside. This gasket was invented by a man named Herman C. Ells Sr. Who didn't want children to lose their lives. He never gained recognition for his work, being a humble man only wanting to save lives. However, children can be unwittingly harmed by hiding inside any discarded refrigerator. Types of domestic refrigerators. Domestic refrigerators and freezers for food storage are made in a range of sizes. Among the smallest is a 4 L Peltier fridge advertised as being able to hold 6 cans of beer. A large domestic fridge stands as tall as a person and may be about 1 m wide with a capacity of 600 L. Some models for small households fit under kitchen work surfaces, usually about 86 cm high. Fridges may be combined with freezers, either stacked with fridge or freezer above, below, or side by side. A fridge without a true freezer may have a small compartment to make ice. Freezers may have drawers to store food in, or they may have no divisions (chest freezers). Fridges and freezers may be free-standing, or built into a kitchen. Refrigeration units for commercial and industrial applications can be made any size, shape or style to fit customer needs. Energy efficiency. An auto-defrost unit uses a blower fan to keep moisture out of the unit. It also has a heating coil beneath the evaporator that periodically heats the freezer compartment and melts any ice buildup. Some units also have heaters in the side of the door to keep the unit from "weeping." Manual defrost units are available in used-appliance shops or by special order. Refrigerators used to consume more energy than any other home appliance, but in the last twenty years great strides have been made to make refrigerators more energy efficient. In the early 1990s a competition was held among the major manufacturers to encourage energy efficiency. Current models that are Energy Star qualified use 50 percent less energy than models made before 1993. The most energy-efficient unit made in the US is designed to run on 12 or 110 volts, and consumes about half a kilowatt-hour per day. But even ordinary units are quite efficient; some smaller units use little more than one kilowatt-hour per day. Larger units, especially those with large freezers and icemakers, may use as much as 4 kWh per day. Among the different styles of refrigerators, top-freezer models are more efficient than bottom-freezer models of the same capacity, which are in turn more efficient than side-freezer models. Models with through-the-door ice units are less efficient than those without. Dr. Tom Chalko in Australia has developed an external thermostat to convert any chest freezer into a chest fridge using only about 0.1kWh per day--the amount of energy used by a 100 watt light bulb in one hour. Scientists at Oxford University have reconstructed a refrigerator invented in 1930 by Albert Einstein in their efforts to replace current technologies with energy efficient green technology. The Einstein refrigerator operates without electricity and uses no moving parts or greenhouse gases. Impact on lifestyle. The invention of the refrigerator has allowed the modern family to purchase, store, freeze, prepare and preserve food products in a fresh state for much longer periods of time than was previously possible. For the majority of families without a sizeable garden in which to grow vegetables and raise animals, the advent of the refrigerator along with the modern supermarket led to a vastly more varied diet and improved health resulting from improved nutrition. Dairy products, meats, fish, poultry and vegetables can be kept refrigerated in the same space within the kitchen (although raw meat should be kept separate from other foodstuffs for reasons of hygiene). The refrigerator allows families to consume more salads, fresh fruits and vegetables during meals without having to own a garden or an orchard. Exotic foodstuffs from far-off countries that have been imported by means of refrigeration can be enjoyed in the home because of the availability of domestic refrigeration. The luxury of freezing allows households to purchase more foods in bulk that can be eaten at leisure while the bulk purchase provides cost savings (see economies of scale). Ice cream, a popular commodity of the 20th century, was previously only available by traveling long distances to where the product was made fresh and had to be eaten on the spot. Now it is a common food item. Ice on-demand not only adds to the enjoyment of cold drinks, but is useful in first-aid applications, not to mention cold packs that can be kept frozen for picnics or in case of emergency. Temperature zones and ratings. Some refrigerators are now divided into four zones to store different types of food: The capacity of a refrigerator is measured in either litres or cubic feet (US). Typically the volume of a combined fridge-freezer is split to 100 litres (3.53 cubic feet) for the freezer and 140 litres (4.94 cubic feet) for the refrigerator, although these values are highly variable. Temperature settings for refrigerator and freezer compartments are often given arbitrary numbers (for example, 1 through 9, warmest to coldest) by manufacturers, but generally 2 to 8 °C (36 to 46 °F) is ideal for the refrigerator compartment and -18 °C (0 °F) for the freezer. Some refrigerators require a certain external temperature (60 °F) to run properly. This can be an issue when placing a refrigerator in an unfinished area such as a garage. European freezers, and refrigerators with a freezer compartment, have a four star rating system to grade freezers. Although both the three and four star ratings specify the same minimum temperature of -18°C, only a four star freezer is intended to be used for freezing fresh food. Three (or fewer) stars are used for frozen food compartments which are only suitable for storing frozen food; introducing fresh food into such a compartment is likely to result in unacceptable temperature rises. |