ratio of word probabilities predicted from brain for telephone and chisel

close this window

telephone

chisel

top 10 words in brain distribution (in article):
design time common allow service provide information modern company power
top 10 words in brain distribution (in article):
blade steel head cut handle metal tool design light size
top 10 words in brain distribution (not in article):
animal card material species record size cat wolf breed type
top 10 words in brain distribution (not in article):
iron hair nail whip breast drink century modern bronze knife
times more probable under telephone 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chisel
(words not in the model)
The telephone'" (from the, "tēle", "far" and φωνή, "phōnē", "voice") is a telecommunications device that is used to transmit and receive electronically or digitally encoded sound (most commonly speech) between two or more people conversing. It is one of the most common household appliances in the developed world today. Most telephones operate through transmission of electric signals over a complex telephone network which allows almost any phone user to communicate with almost any other user. Graphic symbols used to designate telephone service or phone-related information in print, signs, and other media include,, and. Basic principle. A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active state or "off hook" by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator that produces DTMF tones which are sent to the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (generally over 100 volts AC) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call. When a landline phone is inactive or "on hook", its alerting device is connected across the line through a capacitor, which prevents DC current from flowing through the line. The circuitry at the telephone exchange detects the absence of DC current flow and thus that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, the ringing signal transmitted by the telephone exchange activates the alerting device on the line. When the called party picks up the handset, the switchhook disconnects the alerting device and connects the audio circuitry to the line. The resulting low resistance now causes DC current to flow through this line, confirming that the called phone is now active. Both phones being active and connected through the exchange, the parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call. Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances. In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter. A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components. History. Credit for inventing the electric telephone remains in dispute. As with other great inventions such as radio, television, light bulb, and computer, there were several inventors who did pioneer experimental work on voice transmission over a wire and improved on each other's ideas. Innocenzo Manzetti, Antonio Meucci, Johann Philipp Reis, Elisha Gray, Alexander Graham Bell, and Thomas Edison, among others, have all been credited with pioneer work on the telephone. A Hungarian engineer, Tivadar Puskás invented the Telephone exchange in 1876. The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive. Early commercial instruments. Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" -their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument. Early telephones were locally powered, using either a dynamic transmitter or by the powering of a transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Early telephones used a single wire for the subscriber's line, with ground return used to complete the circuit (as used in telegraphs). The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive. At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential. Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire, and later over the same wire, but with a condenser (capacitor) in series with the bell coil to allow the AC ringer signal through while still blocking DC (keeping the phone "on hook"). Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking. Rural and other telephones that were not on a common battery exchange had a magneto or hand-cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator. In the A chisel'" is a tool with a characteristically shaped cutting edge (such that wood chisels have lent part of their name to a particular grind) of blade on its end, for carving or cutting a hard material such as wood, stone, or metal. The handle and blade of some types of chisel are made of metal or wood with a sharp edge in it. In use, the chisel is forced into the material to cut the material. The driving force may be manually applied or applied using a mallet or hammer. In industrial use, a hydraulic ram or falling weight ('trip hammer') drives the chisel into the material to be cut. A "gouge", one type of chisel, is used, particularly in woodworking, woodturning and sculpture, to carve small pieces from the material. Gouges are most often used in creating concave surfaces. A gouge typically has a 'U'-shaped cross-section. Types of Chisels. Chisels have a wide variety of uses. Many types of chisels have been devised, each specially suited to its intended use. Different types of chisels may be constructed quite differently, in terms of blade width or length, as well as shape and hardness of blade. They may have wooden handles attached or may be made entirely of one piece of metal. Woodworking chisels. Woodworking chisels range from quite small hand tools for tiny details, to large chisels used remove big sections of wood, in 'roughing out' the shape of a pattern or design. Typically, in woodcarving, one starts with a larger tool, and gradually progresses to smaller tools to finish the detail. One of the largest types of chisel is the slick, used in timber frame construction and wooden shipbuilding. According to their function there are many names given to woodworking chisels, such as: Japanese woodworking chisels. The better quality Japanese wood chisels are made from laminated steel. There are different types of metals used in each chisel. The better ones are laminated by hand, over a charcoal fire. The combination of the metals makes a chisel that takes a very sharp edge, and is hard enough to maintain the edge for a long time. This technique produces a tools that have a harder edge, usually a hardness rating of Rockwell 64, compared to their western counterparts of around 62 on the Rockwell scale. There are two basic metals used in these chisels, white steel and blue steel. The names come from the color of the paper the steels are wrapped in. White and blue steel come in vary grades, that vary in carbon content. Both have low levels of impurities. White steel is a simple carbon steel. Blue steel contains alloying elements, and sacrifices some sharpness for edge retention, toughness, and corrosion resistance, although it is not stainless. Many makers are descendants of the samurai sword makers, once highly respected members of their country, until these swords were outlawed. The chisel makers often turned their attention to chisel and plane makers. Expensive sets have a decorative wood grain look to them which is actually the thin layers of steel being hammered together. The neck of the chisel can be twisted to add to the decorative look of the tool. The handles are often made from an exotic hardwood, such as ebony. The sets usually come in a wooden box, signed by the maker. Japanese chisels have hollows in the back side, the wider ones having as many as four hollows. These are intended to help in the flattening of the back of the chisels, which is the first step in sharpening a chisel. Once the back side is perfectly flat, and polished to the required degree, the front and side edges need to be addressed. A general rule is any chisel with a hoop, or metal ring at the end of the handle, is it's designed to be struck with mallet. If it does not have a hoop, it is a paring tool, designed not to be struck with another tool. Lathe tools. A lathe tool is a woodworking chisel designed to cut wood as it is spun on a lathe. These tools have longer handles for more leverage, needed to counteract the tendency of the tool to react to the downward force of the spinning wood being cut or carved. In addition, the angle and method of sharpening is different, a secondary bevel would not be ground on the tool. Woodworking chisels range from quite small hand tools for tiny details, to large chisels used remove big sections of wood, in 'roughing out' the shape of a pattern or design. Typically, in woodcarving, one starts with a larger tool, and gradually progresses to smaller tools to finish the detail. One of the largest types of chisel is the slick, used in timber frame construction and wooden shipbuilding. Metalworking chisels. Chisels used in metal work can be divided into two main categories, "hot" chisels, and "cold" chisels. A hot chisel is used to cut metal that has been heated in a forge to soften the metal. Cold chisel. A cold chisel'" is a tool made of tempered steel used for cutting 'cold' metals, meaning that they are not used in conjunction with heating torches, forges, etc. Cold chisels are used to remove waste metal when a very smooth finish is not required or when the work cannot be done easily with other tools, such as a hacksaw, file, bench shears or power tools. The name cold chisel comes from its use by blacksmiths to cut metal while it was cold as compared to other tools they used to cut hot metal. This tool is also commonly referred to by the misnomer 'coal chisel'. Because cold chisels are used to form metal, they have a less-acute angle to the sharp portion of the blade than a woodworking chisel. This gives the cutting edge greater strength at the expense of sharpness. Cold chisels come in a variety of sizes, from fine engraving tools that are tapped with very light hammers, to massive tools that are driven with sledgehammers. Cold chisels are forged to shape and hardened and tempered (to a brown colour) at the cutting edge. The head of the chisel is chamfered to slow down the formation of the mushroom shape caused by hammering and is left soft to withstand hammer blows. The are four common types of cold chisel. These are the flat chisel, the most widely known type, which is used to cut bars and rods to reduce surfaces and to cut sheet metal which is too thick or difficult to cut with snips. The cross cut chisel is used for cutting grooves and slots. The blade narrows behind the cutting edge to provide clearance. The round nose chisel is used for cutting semi-circular grooves for oil ways in bearings. The diamond point chisel is used for cleaning out corners or difficult places and pulling over centre punch marks wrongly placed for drilling. Although the vast majority of cold chisels are made of steel, a few are manufactured from beryllium copper, for use in special situations where non-sparking tools are required. Hardy chisel. A toothed stone chisel, used by stone sculptors and stonemasons A "'hardy chisel'" is a type of hot chisel with a square shank, which is held in place with the cutting edge facing upwards by placing it in an anvil's Hardy hole. The hot workpiece cut is then placed over the hardy, and struck with a hammer. The hammer drives the chisel into the hot metal, allowing it to be snapped off with a pair of tongs. Stone chisels. Stone chisels are used to carve or cut stone, bricks or concrete slabs. To cut, as opposed to carve, a brick bolster is used; this has a wide, flat blade that is tapped along the cut line to produce a groove, then hit hard in the centre to crack the stone. Sculptors use a "spoon chisel", which is bent, with the bezel (cutting edge) on both sides. To increase the force, stone chisels are often hit with club hammers, a heavier type of hammer. Masonry chisels. Masonry chisels are typically heavy, with a relatively dull head that wedges and breaks, rather than cuts. Normally used as a demolition tool, they may be mounted on a hammer drill, jack hammer, or hammered manually, usually with a heavy hammer of three pounds or more. Plugging chisel. A Plugging chisel has a tapered edge for cleaning out hardened mortar. The chisel is held with one hand and struck with a hammer. The direction of the taper in the blade determines if the chisel cuts deep or runs shallow along the joint.