ratio of word probabilities predicted from brain for spoon and telephone

close this window

spoon

telephone

top 10 words in brain distribution (in article):
steel head cut handle metal type shape form hammer edge
top 10 words in brain distribution (in article):
design common time power allow modern metal century provide handle
top 10 words in brain distribution (not in article):
iron blade tool hair design size hand cell nail whip
top 10 words in brain distribution (not in article):
animal material species wood size cat wolf breed hunt build
times more probable under spoon 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under telephone
(words not in the model)
A spoon'" is a utensil consisting of a small shallow bowl, oval or round, at the end of a handle. A type of cutlery (usually called flatware in the United States), especially as part of a place setting, it is used primarily for serving and eating liquid or semisolid food (sometimes called "spoon-meat"), and solid foods such as rice and cereal which cannot easily be lifted with a fork. Spoons are also used in food preparation to measure, mix, stir and toss ingredients. They can be made from metal (notably flat silver or silverware, plated or solid), wood or plastic. Abbreviation: sp. History. The earliest northern European spoon would seem to have been a chip or splinter of wood; Greek references point to the early and natural use of shells, such as those that are still used by primitive peoples. Ancient Indian texts also refer to the use of spoons. For example, the Rigveda refers to spoons during a passage describing the reflection of light as it "touches the spoon's mouth" (RV 8.43.10). Preserved examples of various forms of spoons used by the ancient Egyptians include those composed of ivory, flint, slate and wood; many of them carved with religious symbols. The spoons of the Greeks and Romans were chiefly made of bronze and silver and the handle usually takes the form of a spike or pointed stem. There are many examples in the British Museum from which the forms of the various types can be ascertained, the chief points of difference being found in the junction of the bowl with the handle. Middle Ages spoons at Chillon Castel Medieval spoons for domestic use were commonly made of cow horn or wood, but brass, pewter, and latten spoons appear to have been common in about the 15th century. The full descriptions and entries relating to silver spoons in the inventories of the royal and other households point to their special value and rarity. The earliest English reference appears to be in a will of 1259. In the wardrobe accounts of Edward I for the year 1300 some gold and silver spoons marked with the "fleur-de-lis", the Paris mark, are mentioned. One of the most interesting medieval spoons is the coronation spoon used in the anointing of the English sovereign. The sets of Apostle Spoons, popular as christening presents in Tudor times, the handles of which terminate in heads or busts of the apostles, are a special form to which antiquarian interest attaches. The earlier English spoon-handles terminate in an acorn, plain knob or a diamond; at the end of the 16th century, the baluster and seal ending becomes common, the bowl being fig-shaped. During The Restoration, the handle becomes broad and flat, the bowl is broad and oval and the termination is cut into the shape known as the hind's foot. In the first quarter of the 18th century, the bowl becomes narrow and elliptical, with a tongue or rat's tail down the back, and the handle is turned up at the end. The modern form, with the tip of the bowl narrower than the base and the rounded end of the handle turned down, came into use about 1760. Types and uses. Spoons are used primarily for eating liquid or semi-liquid foods, such as soup, stew or ice cream, and very small or powdery solid items which cannot be easily lifted with a fork, such as rice, sugar, cereals and green peas. In Southeast Asia, spoons are the primary utensil used for eating; forks are used only to push food onto the spoon. Spoons are also widely used in cooking and serving. In baking, batter is usually thin enough to pour or drop from a spoon; a mixture of such consistency is sometimes called "drop batter”. Rolled dough dropped from a spoon to a cookie sheet can be made into rock cakes and other cookies, while johnnycake may be prepared by dropping spoonfuls of cornmeal onto a hot greased griddle. A spoon is similarly useful in processing jelly, sugar and syrup. A test sample of jelly taken from a boiling mass may be allowed to slip from a spoon in a sheet, in a step called "sheeting". At the "crack" stage, syrup from boiling sugar may be dripped from a spoon, causing it to break with a snap when chilled. When boiled to 240°F. and poured from a spoon, sugar forms a filament, or "thread". Hot syrup is said to "pearl" when it forms such a long thread without breaking when dropped from a spoon. Used for stirring, a spoon is passed through a substance with a continued circular movement for the purpose of mixing, blending, dissolving, cooling, or preventing sticking of the ingredients. Mixed drinks may be "muddled" by working a spoon to crush and mix ingredients such as mint and sugar on the bottom of a glass or mixer. Spoons are employed for mixing certain kinds of powder into water to make a sweet or nutritious drink. A spoon may also be employed to toss ingredients by mixing them lightly until they are well coated with a dressing. A spoonful'"—the amount of material a spoon contains or can contain—is used as a standard unit of measure for volume in cooking, where it normally signifies a "'teaspoonful'". It is abbreviated "coch" or "cochl", from Latin "cochleare". "Teaspoonful" is often used in a similar way to describe the dosage for over the counter medicines. Dessert spoonful and tablespoonful may also be found in drink and food recipes. A teaspoon holds about 5ml and a tablespoon about 15ml. For storage, spoons and knives were sometimes placed in paired "knife boxes", which were often ornate wooden containers with sloping top, used especially during the 18th century. On the table, an ornamental utensil called a "nef", shaped like a ship, might hold a napkin, knife and spoon. The souvenir spoon generally exists solely as a decorative object commemorating an event, place, or special date. Spoons can also be used as a musical instrument. To "spoon-feed" oneself or another can simply mean to feed by means of a spoon. Metaphorically, however, it often means to present something to a person or group so thoroughly or wholeheartedly as to preclude the need of independent thought, initiative or self-reliance on the part of the recipient; or to present information in a slanted version, with the intent to preclude questioning or revision. Someone who accepts passively what has been offered in this way is said to have been spoon-fed. Manufacture. For machine-made spoons, the basic shape is cut out from a sheet of sterling silver, nickel silver alloy or stainless steel. The bowl is cross rolled between two pressurized rollers to produce a thinner section. The handle section is also rolled to produce the width needed for the top end. The blank is then cropped to the required shape, and two dies are used to apply the pattern to the blank. The fash is then removed using a lynisher, and the bowl is formed between two dies and bent. To make a spoon the traditional by way of handforging, a bar of silver is marked up to the correct proportions for the bowl and handle. It is then heated until red hot and held in tongs and using the hammer and anvil, beaten into shape. The tip of the bar is pointed to form the tip of the bowl, then hammered to form the bowl. If a heel is to be added, a section down the centre is left thicker. The edges of the bowl and the tip of the spoon are left thicker as this is where most of the thickness is needed. The handle is then started and hammered out to length going from thick at the neck and gradually tapering down in thickness giving a balanced feel. During this process the piece becomes very hard and has to be annealed several times, then worked again until the final shape is achieved. The bowl is filed to shape, often using a metal template. The bowl is then formed using a tin cake and spoon stake. The molten tin is poured around the spoon stake and left to harden. The handle is then bent down to 45 degrees, and the spoon is hammered into the tin using the spoon stake and a heavy hammer, to form the bowl. The bend in the handle is then adjusted to match the other spoons in the set and so it sits correctly on the table. The bowl is then filed level, a process called striking off. The surfaces are filed, first with a rough file to remove the fire stain from the surface, then with a smooth file. It is then buffed to remove any file marks and fire stain from inside the bowl and is polished to the desired finish. During the hand-forging process the spoon will have been hit with a hammer over 300 hundred times. A machine made spoon receives one or two blows from a press. Bibliography. Features broad array of collectible spoons from around the world, with values. Contains historical information and photos of antique collectible spoons. The telephone'" (from the, "tēle", "far" and φωνή, "phōnē", "voice") is a telecommunications device that is used to transmit and receive electronically or digitally encoded sound (most commonly speech) between two or more people conversing. It is one of the most common household appliances in the developed world today. Most telephones operate through transmission of electric signals over a complex telephone network which allows almost any phone user to communicate with almost any other user. Graphic symbols used to designate telephone service or phone-related information in print, signs, and other media include,, and. Basic principle. A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active state or "off hook" by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator that produces DTMF tones which are sent to the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (generally over 100 volts AC) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call. When a landline phone is inactive or "on hook", its alerting device is connected across the line through a capacitor, which prevents DC current from flowing through the line. The circuitry at the telephone exchange detects the absence of DC current flow and thus that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, the ringing signal transmitted by the telephone exchange activates the alerting device on the line. When the called party picks up the handset, the switchhook disconnects the alerting device and connects the audio circuitry to the line. The resulting low resistance now causes DC current to flow through this line, confirming that the called phone is now active. Both phones being active and connected through the exchange, the parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call. Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances. In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter. A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components. History. Credit for inventing the electric telephone remains in dispute. As with other great inventions such as radio, television, light bulb, and computer, there were several inventors who did pioneer experimental work on voice transmission over a wire and improved on each other's ideas. Innocenzo Manzetti, Antonio Meucci, Johann Philipp Reis, Elisha Gray, Alexander Graham Bell, and Thomas Edison, among others, have all been credited with pioneer work on the telephone. A Hungarian engineer, Tivadar Puskás invented the Telephone exchange in 1876. The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive. Early commercial instruments. Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" -their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument. Early telephones were locally powered, using either a dynamic transmitter or by the powering of a transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Early telephones used a single wire for the subscriber's line, with ground return used to complete the circuit (as used in telegraphs). The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive. At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential. Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire, and later over the same wire, but with a condenser (capacitor) in series with the bell coil to allow the AC ringer signal through while still blocking DC (keeping the phone "on hook"). Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking. Rural and other telephones that were not on a common battery exchange had a magneto or hand-cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator. In the 1890s a new smaller style of telephone was introduced, packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery and magneto were in a separate "bell box." In phones connected to common battery exchanges, the bell box was installed under a desk, or other out of the way place, since it did not need a battery or magneto. Cradle designs were also used at this time, having a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular. Disadvantages of single wire operation such as crosstalk and hum from nearby AC power wires had already led to the use of twisted pairs and, for long distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long distance calls from their own telephones but made an appointment to use a special sound proofed long distance telephone booth furnished with the latest technology. What turned out to be the most popular and longest lasting physical style of telephone was introduced in the early 20th century, including Bell's Model 102. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use sat in a cradle in the base unit. The of the Model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure. The dial switch in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1-10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle. After the 1930s, the base also enclosed the bell and induction coil, obviating the old separate bell box. Power was supplied to each subscriber line by central office batteries instead of a local battery, which required periodic service. For the next half century, the network behind the telephone became progressively larger and much more efficient, but after the dial was added the instrument itself changed little until touch tone replaced the dial in the 1960s. Digital telephony. The Public Switched Telephone Network (PSTN) has gradually evolved towards digital telephony which has improved the capacity and quality of the network. End-to-end analog telephone networks were first modified in the early 1960s by upgrading transmission networks with T1 carrier systems. Later technologies such as SONET and fiber optic transmission methods further advanced digital transmission. Although analog carrier systems existed, digital transmission made it possible to significantly increase the number of channels multiplexed on a single transmission medium. While today the end instrument remains analog, the analog signals reaching the aggregation point (Serving Area Interface (SAI) or the central office (CO)) are typically converted to digital signals. Digital loop carriers (DLC) are often used, placing the digital network ever closer to the customer premises, relegating the analog local loop to legacy status. IP telephony. Internet Protocol (IP) telephony (also known as Voice over Internet Protocol, VoIP), is a disruptive technology that is rapidly gaining ground against traditional telephone network technologies. As of January 2005, up to 10% of telephone subscribers in Japan and South Korea have switched to this digital telephone service. A January 2005 Newsweek article suggested that Internet telephony may be "the next big thing." As of 2006 many VoIP companies offer service to consumers and businesses. IP telephony uses an Internet connection and hardware IP Phones or softphones installed on personal computers to transmit conversations encoded as data packets. In addition to replacing POTS (plain old telephone service), IP telephony services are also competing with mobile phone services by offering free or lower cost connections via WiFi hotspots. VoIP is also used on private networks which may or may not have a connection to the global telephone network. Usage. By the end of 2006, there were a total of nearly 4 billion mobile and fixed-line subscribers and over 1 billion Internet users worldwide. This included 1.27 billion fixed-line subscribers and 2.68 billion mobile subscribers. Telephone operating companies. In some countries, many telephone operating companies (commonly abbreviated to "telco" in American English) are in competition to provide telephone services. Some of them are included in the following list. However, the list only includes facilities based providers and not companies which lease services from facilities based providers in order to serve their customers.