ratio of word probabilities predicted from brain for house and bicycle

close this window

house

bicycle

top 10 words in brain distribution (in article):
city build house town state home Unite country public people
top 10 words in brain distribution (in article):
fiber city build town state century Unite produce country production
top 10 words in brain distribution (not in article):
store street bus road village department park bar bath sell
top 10 words in brain distribution (not in article):
sheep house wool cotton store fabric street weave hamlet home
times more probable under house 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under bicycle
(words not in the model)
A house'" generally refers to a or building that is a dwelling or place for habitation by humans. The term includes many kinds of dwellings ranging from rudimentary huts of nomadic tribes to high-rise apartment buildings. However, the word can also be used as a verb ("to house"), and can have adjectival formations as well. In some contexts, "house" may mean the same as dwelling, residence, home, abode, accommodation, housing, lodging, among other meanings. The social unit that lives in a house is known as a household. Most commonly, a household is a family unit of some kind, though households can be other social groups, such as single persons, or groups of unrelated individuals. Settled agrarian and industrial societies are composed of household units living permanently in housing of various types, according to a variety of forms of land tenure. English-speaking people generally call any building they routinely occupy "home". Many people leave their houses during the day for work and recreation but typically return to them to sleep or for other activities. History. The oldest house in the world is approximately from 10,000 BC and was made of mammoth bones, found at Mezhirich near Kiev in Ukraine. It was probably covered with mammoth hides. The house was discovered in 1965 by a farmer digging a new basement six feet below the ground. Architect Norbert Schoenauer, in his book "6,000 Years of Housing", identifies three major categories of types of housing: the "Pre-Urban" house, the "Oriental Urban" house, and the "Acidental Urban" house. Types of Pre-Urban houses include temporary dwellings such as the Inuit igloo, semi-permanent dwellings such as the pueblo, and permanent dwellings such as the New England homestead. "Oriental Urban" houses include houses of the ancient Greeks and Romans, and traditional urban houses in China, India, and Islamic cities. "Occidental Urban" houses include medieval urban houses, the Renaissance town house, and the houses, tenements and apartments of the 19th and 20th centuries. Houses of that time were generally made of simple and raw materials. Structure. The developed world in general features three basic types of house that have their own ground-level entry and private open space, and usually on a separately titled parcel of land: In addition, there are various forms of attached housing where a number of dwelling units are co-located within the same structure, which share a ground-level entry and may or may not have any private open space, such as apartments (a.k.a. flats) of various scales. Another type of housing is movable, such as houseboats, caravans, and trailer homes. In the United Kingdom, 27% of the population live in terraced houses and 32% in semi-detached houses, as of 2002. In the United States as of 2000, 61.4% of people live in detached houses and 5.6% in semi-detached houses, 26% in row houses or apartments, and 7% in mobile homes. Shape. Archaeologists have a particular interest in house shape: they see the transition over time from round huts to rectangular houses as a significant advance in optimizing the use of space, and associate it with the growth of the idea of a personal area (see personal space). Function. Some houses transcend the basic functionality of providing "a roof over one's head" or of serving as a family "hearth and home". When a house becomes a display-case for wealth and or fashion and or conspicuous consumption, we may speak of a "great house". The residence of a feudal lord or of a ruler may require defensive structures and thus turn into a fort or a castle. The house of a monarch may come to house courtiers and officers as well as the royal family: this sort of house may become a palace. Moreover, in time the lord or monarch may wish to retreat to a more personal or simple space such as a villa, a hunting lodge or a dacha. Compare the popularity of the holiday house or cottage, also known as a crib. In contrast to a relatively upper class or modern trend to ownership of multiple houses, much of human history shows the importance of multi-purpose houses. Thus the house long served as the traditional place of work (the original cottage industry site or "in-house" small-scale manufacturing workshop) or of commerce (featuring, for example, a ground floor "shop-front" shop or counter or office, with living space above). During the Industrial Revolution there was a separation of manufacturing and banking from the house, though to this day some shopkeepers continue (or have returned) to live "over the shop". Layout. Ideally, architects of houses design rooms to meet the needs of the people who will live in the house. Such designing, known as "interior design", has become a popular subject in universities. Feng shui, originally a Chinese method of situating houses according to such factors as sunlight and micro-climates, has recently expanded its scope to address the design of interior spaces with a view to promoting harmonious effects on the people living inside the house. Feng shui can also mean the 'aura' in or around a dwelling. Compare the real-estate sales concept of "indoor-outdoor flow". The square footage of a house in the United States reports the area of "living space", excluding the garage and other non-living spaces. The "square meters" figure of a house in Europe reports the area of the walls enclosing the home, and thus includes any attached garage and non-living spaces. Parts. Many houses have several rooms with specialized functions. These may include a living eating area, a sleeping area, and (if suitable facilities and services exist) washing and lavatory areas. In traditional agriculture-oriented societies, domestic animals such as chickens or larger livestock (like cattle) often share part of the house with human beings. Most conventional modern houses will at least contain a bedroom, bathroom, kitchen (or kitchen area), and a living room. A typical "foursquare house" (as pictured) occurred commonly in the early history of the United States of America, with a staircase in the center of the house, surrounded by four rooms, and connected to other sections of the house (including in more recent eras a garage). The names of parts of a house often echo the names of parts of other buildings, but could typically include: Construction. In the United States, modern house-construction techniques include light-frame construction (in areas with access to supplies of wood) and adobe or sometimes rammed-earth construction (in arid regions with scarce wood-resources). Some areas use brick almost exclusively, and quarried stone has long provided walling. To some extent, aluminum and steel have displaced some traditional building materials. Increasingly popular alternative construction materials include insulating concrete forms (foam forms filled with concrete), structural insulated panels (foam panels faced with oriented strand board or fiber cement), and light-gauge steel framing and heavy-gauge steel framing. More generally, people often build houses out of the nearest available material, and often tradition and or culture govern construction-materials, so whole towns, areas, counties or even states countries may be built out of one main type of material. For example, a large fraction of American houses use wood, while most British and many European houses utilize stone or brick. In the 1900s, some house designers started using prefabrication. Sears, Roebuck & Co. first marketed their Houses by Mail to the general public in 1908. Prefab techniques became popular after World War II. First small inside rooms framing, then later, whole walls were prefabricated and carried to the construction site. The original impetus was to use the labor force inside a shelter during inclement weather. More recently builders have begun to collaborate with structural engineers who use computers and finite element analysis to design prefabricated steel-framed homes with known resistance to high wind-loads and seismic forces. These newer products provide labor savings, more consistent quality, and possibly accelerated construction processes. Lesser-used construction methods have gained (or regained) popularity in recent years. Though not in wide use, these methods frequently appeal to homeowners who may become actively involved in the construction process. They include: Energy-efficiency. In the developed world, energy-conservation has grown in importance in house-design. Housing produces a major proportion of carbon emissions (30% of the total in the UK, for example). Development of a number of types and techniques continues. They include the zero-energy house, the passive solar house, superinsulated and houses built to the "Passivhaus" standard. Earthquake protection. One tool of earthquake engineering is base isolation which is increasingly used for earthquake protection. Base isolation is a collection of structural elements of a building that should substantially decouple it from the shaking ground thus protecting the building's integrity and enhancing its seismic performance. This technology, which is a kind of seismic vibration control, can be applied both to a newly designed building and to seismic upgrading of existing structures. Normally, excavations are made around the building and the building is separated from the foundations. Steel or reinforced concrete beams replace the connections to the foundations, while under these, the isolating pads, or "base isolators", replace the material removed. While the "base isolation" tends to restrict transmission of the ground motion to the building, it also keeps the building positioned properly over the foundation. Careful attention to detail is required where the building interfaces with the ground, especially at entrances, stairways and ramps, to ensure sufficient relative motion of those structural elements. Legal issues. Buildings with historical importance have restrictions. United Kingdom. New houses in the UK are not covered by the Sale of Goods Act. When purchasing a new house the buyer has less legal protection than when buying a new car. New houses in the UK may be covered by a NHBC guarantee but some people feel that it would be more useful to put new houses on the same legal footing as other products. United States and Canada. In the US and Canada, many new houses are built in housing tracts, which provide homeowners a sense of "belonging" and the feeling they have "made the best use" of their money. However, these houses are often built as cheaply and quickly as possible by large builders seeking to maximize profits. Many environmental health issues are ignored or minimized in the construction of these structures. In one case in Benicia, California, a housing tract was built over an old landfill. Home buyers were never told, and only found out when some began having reactions to high levels of lead and chromium. Identifying houses. With the growth of dense settlement, humans designed ways of identifying houses and or parcels of land. Individual houses sometimes acquire proper names; and those names may acquire in their turn considerable emotional connotations: see for example the house of "Howards End" or the castle of "Brideshead Revisited". A more systematic and general approach to identifying houses may use various methods of house numbering. Animal houses. Humans often build "houses" for domestic or wild animals, often resembling smaller versions of human domiciles. Familiar animal houses built by humans include bird-houses, hen-houses chicken-coops and doghouses (kennels); while housed agricultural animals more often live in barns and stables. However, human interest in building houses for animals does not stop at the domestic pet. People build bat-houses, nesting-sites for wild ducks and other birds, bee houses, giraffe houses, kangaroo houses, worm houses, hermit crab houses, as well as shelters for many other animals. Shelter. Forms of (relatively) simple shelter may include: Houses and symbolism. Houses may express the circumstances or opinions of their builders or their inhabitants. Thus a vast and elaborate house may serve as a sign of conspicuous wealth, whereas a low-profile house built of recycled materials may indicate support of energy conservation. Houses of particular historical significance (former residences of the famous, for example, or even just very old houses) may gain a protected status in town planning as examples of built heritage and or of streetscape values. Plaques may mark such structures. House-ownership provides a common measure of prosperity in economics. Contrast the importance of house-destruction, tent dwelling and house rebuilding in the wake of many natural disasters. Peter Olshavsky's provides a 'pataphysical variation on the house. Heraldry. The house occurs as a rare charge in heraldry. The bicycle'", "'bike'", or "'cycle'" is a pedal-driven, human-powered vehicle with two wheels attached to a frame, one behind the other. Bicycles were introduced in the 19th century and now number about one billion worldwide. They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for such uses as children's toys, adult fitness, military and police applications, courier services, and competitive sports. The basic shape and configuration of a typical bicycle has changed little since the first chain-driven model was developed around 1885. Many details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for particular types of cycling. The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In its early years, bicycle construction drew on pre-existing technologies; more recently, bicycle technology has, in turn, contributed both to old and new areas. History. Multiple innovators contributed to the history of the bicycle by developing precursor human-powered vehicles. The documented ancestors of today's modern bicycle were known as push bikes (still called push bikes outside of North America), draisines, or hobby horses. Being the first human means of transport to make use of the two-wheeler principle, the draisine (or "mistmashine", "running machine"), invented by the German Baron Karl von Drais, is regarded as the archetype of the bicycle. It was introduced by Drais to the public in Mannheim in summer 1817 and in Paris in 1818. Its rider sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his her feet while steering the front wheel. In the early 1860s, Frenchmen Pierre Michaux and Pierre Lallement took bicycle design in a new direction by adding a mechanical crank drive with pedals on an enlarged front wheel. Another French inventor by the name of Douglas Grasso had a failed prototype of Pierre Lallement's bicycle several years earlier. Several why-not-the-rear-wheel inventions followed, the best known being the rod-driven velocipede by Scotsman Thomas McCall in 1869. The French creation, made of iron and wood, developed into the "penny-farthing" (more formally an "ordinary bicycle", a retronym, since there were then no other kind). It featured a tubular steel frame on which were mounted wire spoked wheels with solid rubber tires. These bicycles were difficult to ride due to their very high seat and poor weight distribution. The "dwarf ordinary" addressed some of these faults by reducing the front wheel diameter and setting the seat further back. This necessitated the addition of gearing, effected in a variety of ways, to attain sufficient speed. Having to both pedal and steer via the front wheel remained a problem. J. K. Starley, J. H. Lawson, and Shergold solved this problem by introducing the chain drive (originated by Henry Lawson's unsuccessful "bicyclette"), connecting the frame-mounted pedals to the rear wheel. These models were known as "dwarf safeties", or "safety bicycles", for their lower seat height and better weight distribution. Starley's 1885 Rover is usually described as the first recognizably modern bicycle. Soon, the "seat tube" was added, creating the double-triangle "diamond frame" of the modern bike. Further innovations increased comfort and ushered in a second bicycle craze, the 1890s' "Golden Age of Bicycles". In 1888, Scotsman John Boyd Dunlop introduced the pneumatic tire, which soon became universal. Soon after, the rear freewheel was developed, enabling the rider to coast. This refinement led to the 1898 invention of coaster brakes. Derailleur gears and hand-operated cable-pull brakes were also developed during these years, but were only slowly adopted by casual riders. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing became widely popular. Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the widespread advertising, production, and use of these devices. Uses. Bicycles have been and are employed for many uses: Technical aspects. The bicycle has undergone continual adaptation and improvement since its inception. These innovations have continued with the advent of modern materials and computer-aided design, allowing for a proliferation of specialized bicycle types. Types. Bicycles can be categorized in different ways: e.g. by function, by number of riders, by general construction, by gearing or by means of propulsion. The more common types include utility bicycles, mountain bicycles, racing bicycles, touring bicycles, hybrid bicycles, cruiser bicycles, and BMX bicycles. Less common are tandems, lowriders, tall bikes, fixed gear (fixed-wheel), folding models and recumbents (one of which was used to set the IHPVA Hour record). Unicycles, tricycles and quadracycles are not strictly bicycles, as they have respectively one, three and four wheels, but are often referred to informally as "bikes". Dynamics. A bicycle stays upright while moving forward by being steered so as to keep its center of gravity over the wheels. This steering is usually provided by the rider, but under certain conditions may be provided by the bicycle itself. The combined center of mass of a bicycle and its rider must lean into a turn in order successfully navigate it. This lean is induced by a method known as countersteering, which can be performed by the rider turning the handlebars directly with the hands or indirectly by leaning the bicycle. Short-wheelbase or tall bicycles, when braking, can generate enough stopping force at the front wheel in order to flip longitudinally. The act of purposefully using this force to lift the rear wheel and balance on the front without tipping over is a trick known as a stoppie, endo or front wheelie. Performance. The bicycle is extraordinarily efficient in both biological and mechanical terms. The bicycle is the most efficient self-powered means of transportation in terms of energy a person must expend to travel a given distance. From a mechanical viewpoint, up to 99% of the energy delivered by the rider into the pedals is transmitted to the wheels, although the use of gearing mechanisms may reduce this by 10-15%. In terms of the ratio of cargo weight a bicycle can carry to total weight, it is also a most efficient means of cargo transportation. A human traveling on a bicycle at low to medium speeds of around 10-15 mph (15-25 km h), uses only the energy required to walk, is the most energy-efficient means of transport generally available. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. If the rider is sitting upright, the rider's body creates about 75% of the total drag of the bicycle rider combination. Drag can be reduced by seating the rider in a supine position or a prone position, thus creating a recumbent bicycle or human powered vehicle. Drag can also be reduced by covering the bicycle with an aerodynamic fairing. In addition, the carbon dioxide generated in the production and transportation of the food required by the bicyclist, per mile traveled, is less than 1 10th that generated by energy efficient cars. Construction and parts. In its early years, bicycle construction drew on pre-existing technologies. More recently, bicycle technology has in turn contributed ideas in both old and new areas. Frame. The great majority of today's bicycles have a frame with upright seating which looks much like the first chain-driven bike. Such upright bicycles almost always feature the "diamond frame", a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropouts. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear dropouts. Historically, women's bicycle frames had a top tube that connected in the middle of the seat tube instead of the top, resulting in a lower standover height at the expense of compromised structural integrity, since this places a strong bending load in the seat tube, and bicycle frame members are typically weak in bending. This design, referred to as a "step-through frame", allows the rider to mount and dismount in a dignified way while wearing a skirt or dress. While some women's bicycles continue to use this frame style, there is also a variation, the "mixte", which splits the top tube into two small top tubes that bypass the seat tube and connect to the rear dropouts. The ease of stepping through is also appreciated by those with limited flexibility or other joint problems. Because of its persistent image as a "women's" bicycle, step-through frames are not common for larger frames. Another style is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world's fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale. Historically, materials used in bicycles have followed a similar pattern as in aircraft, the goal being high strength and low weight. Since the late 1930s alloy steels have been used for frame and fork tubes in higher quality machines. Celluloid found application in mudguards, and aluminum alloys are increasingly used in components such as handlebars, seat post, and brake levers. In the 1980s aluminum alloy frames became popular, and their affordability now makes them common. More expensive carbon fiber and titanium frames are now also available, as well as advanced steel alloys and even bamboo. Drivetrain and gearing. Since cyclists' legs are most efficient over a narrow range of pedaling speeds (cadence), a variable gear ratio helps a cyclist to maintain an optimum pedalling speed while covering varied terrain. As a first approximation, utility bicycles often use a hub gear with a small number (3 to 5) of widely-spaced gears, road bicycles and racing bicycles use derailleur gears with a moderate number (10 to 22) of closely-spaced gears, while mountain bicycles, hybrid bicycles, and touring bicycles use dérailleur gears with a larger number (15 to 30) of moderately-spaced gears, often including an extremely low gear (granny gear) for climbing steep hills. Different gears and ranges of gears are appropriate for different people and styles of cycling. Multi-speed bicycles allow gear selection to suit the circumstances, e.g. it may be comfortable to use a high gear when cycling downhill, a medium gear when cycling on a flat road, and a low gear when cycling uphill. In a lower gear every turn of the pedals leads to fewer rotations of the rear wheel. This allows the energy required to move the same distance to be distributed over more pedal turns, reducing fatigue when riding uphill, with a heavy load, or against strong winds. A higher gear allows a cyclist to make fewer pedal cycles to maintain a given speed, but with more effort per turn of the pedals. The "drivetrain" begins with pedals which rotate the cranks, which are held in axis by the bottom bracket. Most bicycles use a chain to transmit power to the rear wheel. A relatively small number of bicycles use a shaft drive to transmit power. A very small number of bicycles (mainly single-speed bicycles intended for short-distance commuting) use a belt drive as an oil-free way of transmitting power. With a "chain drive" transmission, a "chainring" attached to a crank drives the chain, which in turn rotates the rear wheel via the rear sprocket(s) (cassette or freewheel). There are four gearing options: two-speed hub gear integrated with chain ring, up to 3 chain rings, up to 11 sprockets, hub gear built in to rear wheel (3-speed to 14-speed). The most common options are either a rear hub or multiple chain rings combined with multiple sprockets (other combinations of options are possible but less common). With a "shaft drive" transmission, a gear set at the bottom bracket turns the shaft, which then turns the rear wheel via a gear set connected to the wheel's hub. There is some small loss of efficiency due to the two gear sets needed. The only gearing option with a shaft drive is to use a hub gear. Steering and seating. The handlebars turn the fork and the front wheel via the stem, which rotates within the headset. Three styles of handlebar are common. "Upright handlebars", the norm in Europe and elsewhere until the 1970s, curve gently back toward the rider, offering a natural grip and comfortable upright position. "Drop handlebars" "drop" as they curve forward and down, offering the cyclist best braking power from a more aerodynamic "crouched" position, as well as more upright positions in which the hands grip the brake lever mounts, the forward curves, or the upper flat sections for increasingly upright postures. Mountain bikes generally feature a 'straight handlebar' or 'riser bar' with varying degrees of sweep backwards and centimeters rise upwards, as well as wider widths which can provide better handling due to increased leverage against the wheel. Saddles also vary with rider preference, from the cushioned ones favored by short-distance riders to narrower saddles which allow more room for leg swings. Comfort depends on riding position. With comfort bikes and hybrids the cyclist sits high over the seat, their weight directed down onto the saddle, such that a wider and more cushioned saddle is preferable. For racing bikes where the rider is bent over, weight is more evenly distributed between the handlebars and saddle, the hips are flexed, and a narrower and harder saddle is more efficient. Differing saddle designs exist for male and female cyclists, accommodating the genders' differing anatomies, although bikes typically are sold with saddles most appropriate for men. A recumbent bicycle has a reclined chair-like seat that some riders find more comfortable than a saddle, especially riders who suffer from certain types of seat, back, neck, shoulder, or wrist pain. Recumbent bicycles may have either under-seat or over-seat steering. Brakes. Modern bicycle "brakes" may be "rim brakes", in which friction pads are compressed against the wheel rims, "internal hub brakes", in which the friction pads are contained within the wheel hubs, "disc brakes", with a separate rotor for braking. Disc brakes are more common on off-road bicycles, tandems and recumbent bicycles than on road-specific bicycles. With hand-operated brakes, force is applied to brake levers mounted on the handlebars and transmitted via Bowden cables or hydraulic lines to the friction pads. A rear hub brake may be either hand-operated or pedal-actuated, as in the back pedal "coaster brakes" which were popular in North America until the 1960s, and are still common in children's bicycles. Track bicycles do not have dedicated brakes. Brakes are not required for riding on a track because all riders ride in the same direction around a track which does not necessitate sharp deceleration. Track riders are still able to slow down because all track bicycles are fixed-gear, meaning that there is no freewheel. Without a freewheel, coasting is impossible, so when the rear wheel is moving, the crank is moving. To slow down, the rider applies resistance to the pedals this acts as a braking system which can be as effective as a friction-based rear wheel brake, but not as effective as a front wheel brake. Suspension. Bicycle suspension refers to the system or systems used to "suspend" the rider and all or part of the bicycle. This serves two purposes: Bicycle suspensions are used primarily on mountain bicycles, but are also common on hybrid bicycles, and can even be found on some road bicycles, as they can help deal with problematic vibration. Suspension is especially important on recumbent bicycles, since while an upright bicycle rider can stand on the pedals to achieve some of the benefits of suspension, a recumbent rider cannot. Wheels. The wheel axle fits into dropouts in the frame and forks. A pair of wheels may be called a wheelset, especially in the context of ready-built "off the shelf", performance-oriented wheels. Tires vary enormously. Skinny, road-racing tires may be completely smooth, or (slick). On the opposite extreme, off-road tires are much wider and thicker, and usually have a deep tread for gripping in muddy conditions. Accessories, repairs, and tools. Some components, which are often optional accessories on sports bicycles, are standard features on utility bicycles to enhance their usefulness and comfort. Mudguards, or fenders, protect the cyclist and moving parts from spray when riding through wet areas and chainguards protect clothes from oil on the chain while preventing clothing from being caught between the chain and crankset teeth. Kick stands keep a bicycle upright when parked. Front-mounted baskets for carrying goods are often used. Luggage carriers and panniers mounted above the rear tire can be used to carry equipment or cargo. Parents sometimes add rear-mounted child seats and or an auxiliary saddle fitted to the crossbar to transport children. "Toe-clips" and "toestraps" and clipless pedals help keep the foot locked in the proper position on the pedals, and enable the cyclist to pull as well as push the pedals—although not without their hazards, eg. may lock foot in when needed to prevent a fall. Technical accessories include cyclocomputers for measuring speed, distance, etc. Other accessories include lights, reflectors, security locks, mirror, water bottles and cages, and bell. Bicycle helmets may help reduce injury in the event of a collision or accident, and a certified helmet is legally required for some riders in some jurisdictions. Helmets are classified as an accessory or an item of clothing by others. Many cyclists carry "tool kits". These may include a tire patch kit (which, in turn, may contain any combination of a hand pump or CO2 Pump, tire levers, spare tubes, self-adhesive patches, or tube-patching material, an adhesive, a piece of sandpaper or a metal grater (to roughing the tube surface to be patched), and sometimes even a block of French chalk.), wrenches, hex keys, screwdrivers, and a chain tool. There are also cycling specific multi-tools that combine many of these implements into a single compact device. More specialized bicycle components may require more complex tools, including proprietary tools specific for a given manufacturer. Some bicycle parts, particularly hub-based gearing systems, are complex, and many cyclists prefer to leave maintenance and repairs to professional bicycle mechanics. In some areas it is possible to purchase road-side assistance from companies such as the Better World Club. Other cyclists maintain their own bicycles, perhaps as part of their enjoyment of the hobby of cycling or simply for economic reasons. The ability to repair and maintain your own bicycle is also celebrated within the DIY movement. Standards. A number of formal and industry standards exist for bicycle components to help make spare parts exchangeable and to maintain a minimum product safety. The International Organization for Standardization, ISO, has a special technical committee for cycles, TC149, that has the following scope: "Standardization in the field of cycles, their components and accessories with particular reference to terminology, testing methods and requirements for performance and safety, and interchangeability." CEN, European Committee for Standardisation, also has a specific Technical Committee, TC333, that defines European standards for cycles. Their mandate states that EN cycle standards shall harmonize with ISO standards. Some CEN cycle standards were developed before ISO published their standards, leading to strong European influences in this area. European cycle standards tend to describe minimum safety requirements, while ISO standards have historically harmonized parts geometry. Parts. For details on specific bicycle parts, see list of bicycle parts and. Social and historical aspects. The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In daily life. Around the turn of the 20th century, bicycles reduced crowding in inner-city tenements by allowing workers to commute from more spacious dwellings in the suburbs. They also reduced dependence on horses. Bicycles allowed people to travel for leisure into the country, since bicycles were three times as energy efficient as walking and three to four times as fast. Recently, several European cities have implemented successful schemes known as community bicycle programs or bike-sharing. These initiatives complement a city's public transport system and offer an alternative to motorized traffic to help reduce congestion and pollution. Users take a bicycle at a parking station, use it for a limited amount of time, and then return it to the same or different station. Examples include Bicing in Barcelona, Vélo'v in Lyon and Vélib' in Paris. In cities where the bicycle is not an integral part of the planned transportation system, commuters often use bicycles as elements of a mixed-mode commute, where the bike is used to travel to and from train stations or other forms of rapid transit. Folding bicycles are useful in these scenarios, as they are less cumbersome when carried aboard. Los Angeles removed a small amount of seating on some trains to make more room for bicycles and wheel chairs. Bicycles offer an important mode of transport in many developing countries. Until recently, bicycles have been a staple of everyday life throughout Asian countries. They are the most frequently used method of transport for commuting to work, school, shopping, and life in general. As a result, bicycles there are almost always equipped with baskets. Female emancipation. The diamond-frame safety bicycle gave women unprecedented mobility, contributing to their emancipation in Western nations. As bicycles became safer and cheaper, more women had access to the personal freedom they embodied, and so the bicycle came to symbolize the New Woman of the late 19th century, especially in Britain and the United States. The bicycle was recognized by 19th-century feminists and suffragists as a "freedom machine" for women. American Susan B. Anthony said in a "New York World" interview on February 2 1896: "Let me tell you what I think of bicycling. I think it has done more to emancipate women than anything else in the world. It gives women a feeling of freedom and self-reliance. I stand and rejoice every time I see a woman ride by on a wheel...the picture of free, untrammeled womanhood." In 1895 Frances Willard, the tightly-laced president of the Women’s Christian Temperance Union, wrote a book called "How I Learned to Ride the Bicycle", in which she praised the bicycle she learned to ride late in life, and which she named "Gladys", for its "gladdening effect" on her health and political optimism. Willard used a cycling metaphor to urge other suffragists to action, proclaiming, "I would not waste my life in friction when it could be turned into momentum." Male anger at the freedom symbolized by the New (bicycling) Woman was demonstrated when the male undergraduates of Cambridge University showed their opposition to the admission of women as full members of the university by hanging a woman bicyclist in effigy in the main town square. This was as late as 1897. The bicycle craze in the 1890s also led to a movement for so-called rational dress, which helped liberate women from corsets and ankle-length skirts and other restrictive garments, substituting the then-shocking bloomers. Economic implications. Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft. They also served to teach the industrial models later adopted, including mechanization and mass production (later copied and adopted by Ford and General Motors), vertical integration (also later copied and adopted by Ford), aggressive advertising (as much as 10% of all advertising in U.S. periodicals in 1898 was by bicycle makers), lobbying for better roads (which had the side benefit of acting as advertising, and of improving sales by providing more places to ride), all first practised by Pope. In addition, bicycle makers adopted the annual model change (later derided as planned obsolescence, and usually credited to General Motors), which proved very successful. Furthermore, bicycles were an early example of conspicuous consumption, being adopted by the fashionable elites. In addition, by serving as a platform for accessories, which could ultimately cost more than the bicycle itself, it paved the way for the likes of the Barbie doll. Moreover, they helped create, or enhance, new kinds of businesses, such as bicycle messengers, travelling seamstresses, riding academies, and racing rinks (Their board tracks were later adapted to early motorcycle and automobile racing.) Also, there were a variety of new inventions, such as spoke tighteners, and specialized lights, socks and shoes, and even cameras (such as the Eastman Company's "Poco"). Probably the best known and most widely used of these inventions, adopted well beyond cycling, is Charles Bennett's Bike Web, which came to be called the "jock strap". They also presaged a move away from public transit that would explode with the introduction of the automobile. This liberation would be repeated again with the appearance of the snowmobile. J. K. Starley's company became the Rover Cycle Company Ltd. in the late 1890s, and then simply the Rover Company when it started making cars. The Morris Motor Company (in Oxford) and Škoda also began in the bicycle business, as did the Wright brothers. Alistair Craig, whose company eventually emerged to become the engine manufacturers Ailsa Craig, also started from manufacturing bicycles, in Glasgow in March 1885. In general, U.S. and European cycle manufacturers used to assemble cycles from their own frames and components made by other companies, although very large companies (such as Raleigh) used to make almost every part of a bicycle (including bottom brackets, axles, etc.) In recent years, those bicycle makers have greatly changed their methods of production. Now, almost none of them produce their own frames. Many newer or smaller companies only design and market their products; the actual production is done by Asian companies. For example, some 60% of the world's bicycles are now being made in China. Despite this shift in production, as nations such as China and India become more wealthy, their own use of bicycles has declined due to the increasing affordability of cars and motorcycles. One of the major reasons for the proliferation of Chinese-made bicycles in foreign markets is the lower cost of labor in China. One of the profound economic implications of bicycle use is that it liberates the user from oil consumption (Ballantine, 1972). H.G. Wells said: “Every time I see an adult on a bicycle, I no longer despair for the future of the human race.” (Quotegarden.com). The bicycle is a inexpensive, fast, healthy and environmentally friendly mode of transport (Illich, 1974) Legal requirements. Early in its development, like in the case of automobiles, there were restrictions on the operation of bicycles. Along with advertising, and to gain free publicity, Albert A. Pope litigated on behalf of cyclists The 1968 Vienna Convention on Road Traffic of the United Nations considers a bicycle to be a vehicle, and a person controlling a bicycle (whether actually riding or not) is considered an operator. The traffic codes of many countries reflect these definitions and demand that a bicycle satisfy certain legal requirements, sometimes even including licensing, before it can be used on public roads. In many jurisdictions, it is an offense to use a bicycle that is not in roadworthy condition. In most jurisdictions, bicycles must have functioning front and rear lights when ridden after dark. As some generator or dynamo-driven lamps only operate while moving, rear reflectors are frequently also mandatory. Since a moving bicycle makes little noise, some countries insist that bicycles have a warning bell for use when approaching pedestrians, equestrians, and other cyclists. See also. "'Special uses and related vehicle types'" References. Other authors: Eddie Borysewicz, Greg LeMond, Davis Phinney, Connie Carpenter.