ratio of word probabilities predicted from brain for eye and screwdriver

close this window

eye

screwdriver

top 10 words in brain distribution (in article):
cell light animal human form produce muscle body water brain
top 10 words in brain distribution (in article):
blade steel design head handle tool century type size shape
top 10 words in brain distribution (not in article):
drink lamp wine plant tissue beer bone process structure bottle
top 10 words in brain distribution (not in article):
iron cut city metal hair material nail build whip bronze
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under screwdriver
(words not in the model)
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomic. These two groups are not monophyletic; the cnidaira also possess cilliated cells, Pit eyes. Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pinhole eye. The pinhole eye is an "advanced" form of pit eye incorporating these improvements, most notably a small aperture (which may be adjustable) and deep pit. It is only found in the nautiloids. Without a lens to The screwdriver'" is a device specifically designed to insert and tighten, or to loosen and remove, screws. The screwdriver is made up of a head or tip, which engages with a screw, a mechanism to apply torque by rotating the tip, and some way to position and support the screwdriver. A typical hand screwdriver comprises an approximately cylindrical handle of a size and shape to be held by a human hand, and an axial shaft fixed to the handle, the tip of which is shaped to fit a particular type of screw. The handle and shaft allow the screwdriver to be positioned and supported and, when rotated, to apply torque. Screwdrivers are made in a variety of shapes, and the tip can be rotated manually or by an electric or other motor. A screw has a head with a contour such that an appropriate screwdriver tip can be engaged in it in such a way that the application of sufficient torque to the screwdriver will cause the screw to rotate. History. Gunsmiths still refer to a screwdriver as a "turnscrew", under which name it is an important part of a set of pistols. The name was common in earlier centuries, used by cabinet makers and shipwrights and perhaps other trades. The Cabinet-Maker's screwdriver is one of the longest-established handle forms, somewhat oval or elipsoid in cross section. This is variously attributed to improving grip or preventing the tool rolling off the bench, but there is no reason to suppose these are not rationalisations. The shape has been popular for a couple of hundred years. It is usually associated with a plain head for slotted screws, but has been used with many head forms. "See Also: "The History of Screws Types and variations. There are many types of screw heads, of which the most common are the slotted, Phillips, PoziDriv SupaDriv (crosspoint), Robertson, TORX, and Allen (hex). Screwdrivers come in a large variety of sizes to match those of screws, from tiny jeweler's screwdrivers up. If a screwdriver that is not the right size and type for the screw is used, it is likely that the screw will be damaged in the process of tightening it. This is less important for PoziDriv and SupaDriv, which are designed specifically to be more tolerant of size mismatch. When tightening a screw with force, it is important to press the head hard into the screw, again to avoid damaging the screw. Some manual screwdrivers have a ratchet action whereby the screwdriver blade is locked to the handle for clockwise rotation, but uncoupled for counterclockwise rotation when set for tightening screws; and vice versa for loosening. Many screwdriver designs have a handle with detachable head (the part of the screwdriver which engages with the screw), called "bits" as with drill bits, allowing a set of one handle and several heads to be used for a variety of screw sizes and types. This kind of design has allowed the development of electrically powered screwdrivers, which, as the name suggests, use an electric motor to rotate the bit. In such cases the terminology for power drills is used, e.g. "shank" or "collet". Some drills can also be fitted with screwdriver heads. Manual screw drivers with a spiral ratchet'" mechanism to turn pressure (linear motion) into rotational motion also exist, and predate electric screwdrivers. The user pushes the handle toward the workpiece, causing a pawl in a spiral groove to rotate the shank and the removable bit. The ratchet can be set to rotate left or right with each push, or can be locked so that the tool can be used like a conventional screwdriver. Once very popular, these spiral ratchet drivers, using proprietary bits, have been largely discontinued by manufacturers such as Stanley, although one can still find them at vintage tool auctions. Companies such as Lara Specialty Tools now offer a modernized version that uses standard 1 /4-inch hex shank power tool bits. Since a variety of drill bits are available in this format, it allows the tool to do double duty as a "push drill". Many modern electrical appliances, if they contain screws at all, use screws with heads other than the typical slotted or Phillips styles. TORX is one such pattern that has become very widespread. The main cause of this trend is manufacturing efficiency: TORX and other types are designed so the driver will not slip out of the fastener as will a Phillips driver. (Slotted screws are rarely used in mass-produced devices, since the driver is not inherently centered on the fastener). A benefit disadvantage of non-typical fasteners (depending on your point of view) is that it can be more difficult for users of a device to disassemble it than if more-common head types were used, but TORX and other drivers are widely available. Specialized patterns of security screws are also used, such as the Gamebit head style used in all Nintendo consoles, though drivers for most security heads are, again, readily available. While screwdrivers are designed for the above functions, they are commonly also used as improvised substitutes for pry bars, levers, and hole punches, as well as other tools. There is no such thing as a "left-handed screwdriver", as the device can easily be wielded in either hand. To be sent on an errand to find a left-handed screwdriver is often a test of stupidity, or is used as a metaphor for something useless. The term "Birmingham screwdriver" is used jokingly in the UK to denote a hammer or sledgehammer. The handle and shaft of screwdrivers have changed considerably over time. The design is influenced by both purpose and manufacturing requirements. The "Perfect Handle" screwdriver was first manufactured by HD Smith & Company that operated from 1850 to 1900. Many manufacturers adopted this handle design world wide. The "Flat Bladed" screwdriver was another design composed of drop forged steel with riveted wood handles? Among slotted screwdrivers, there are a couple of major variations at the blade or bit end involving the profile of the blade as viewed face-on. The more common type is sometimes referred to as keystone'", where the blade profile is slightly flared before tapering off at the end. To maximize access in space-restricted applications, the same edges for the "'cabinet'" variety, in contrast, are straight and parallel, meeting the end of the blade at a right angle.