eye |
beetle |
top 10 words in brain distribution (in article): cell light species body form muscle human produce animal water |
top 10 words in brain distribution (in article): species animal bird design form egg common body female allow |
top 10 words in brain distribution (not in article): drink lamp tissue bone wine process structure beer bottle plant |
top 10 words in brain distribution (not in article): vehicle wheel gear car wear tooth time tea aircraft type |
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under beetle (words not in the model) | |
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens — similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts — indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution — the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomic. These two groups are not monophyletic; the cnidaira also possess cilliated cells, Pit eyes. Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pinhole eye. The pinhole eye is an "advanced" form of pit eye incorporating these improvements, most notably a small aperture (which may be adjustable) and deep pit. It is only found in the nautiloids. Without a lens to focus the image, it produces a blurry image, and will blur out a point to the size of the aperture. Consequently, nautiloids can't discriminate between objects with an angular separation of less than 11°. Shrinking the aperture would produce a sharper image, but let in less light. Spherical lensed eye. The resolution of pit eyes can be greatly improved by incorporating a material with a higher refractive index to form a lens, which may greatly reduce the blur radius encountered — hence increasing the resolution obtainable. The most basic form, still seen in some gastropods and annelids, consists of a lens of one refractive index. A far sharper image can be obtained using materials with a high refractive index, decreasing to the edges — this decreases the focal length and thus allows a sharp image to form on the retina. This also allows a larger aperture for a given sharpness of image, allowing more light to enter the lens; and a flatter lens, reducing spherical aberration. Such an inhomogeneous lens is necessary in order for the focal length to drop from about 4 times the lens radius, to 2.5 radii. Heterogeneous eyes have evolved at least eight times — four or more times in gastropods, once in the copepods, once in the annelids and once in the cephalopods. No aquatic organisms possess homogeneous lenses; presumably the evolutionary pressure for a heterogeneous lens is great enough for this stage to be quickly "outgrown". This eye creates an image that is sharp enough that motion of the eye can cause significant blurring. To minimize the effect of eye motion while the animal moves, most such eyes have stabilizing eye muscles. The ocelli of insects bear a simple lens, but their focal point always lies behind the retina; consequently they can never form a sharp image. This capitulates the function of the eye. Ocelli (pit-type eyes of arthropods) blur the image across the whole retina, and are consequently excellent at responding to rapid changes in light intensity across the whole visual field — this fast response is further accelerated by the large nerve bundles which rush the information to the brain. Focussing the image would also cause the sun's image to be focussed on a few receptors, with the possibility of damage under the intense light; shielding the receptors would block out some light and thus reduce their sensitivity. This fast response has led to suggestions that the ocelli of insects are used mainly in flight, because they can be used to detect sudden changes in which way is up (because light, especially UV light which is absorbed by vegetation, usually comes from above). Weaknesses. One weakness of this eye construction is that chromatic aberration is still quite high — although for organisms without color vision, this is a very minor concern. A weakness of the vertebrate eye is the blind spot which results from a gap in the retina where the optic nerve exits at the back of the eye; the cephalopod eye has no blind spot as the retina is in the opposite orientation. Multiple lenses. Some marine organisms bear more than one lens; for instance the copeopod "Pontella" has three. The outer has a parabolic surface, countering the effects of spherical aberration while allowing a sharp image to be formed. "Copilla'"s eyes have two lenses, which move in and out like a telescope. Such arrangements are rare and poorly understood, but represent an interesting alternative construction. An interesting use of multiple lenses is seen in some hunters such as eagles and jumping spiders, which have a refractive cornea (discussed next): these have a negative lens, enlarging the observed image by up to 50% over the receptor cells, thus increasing their optical resolution. Refractive cornea. In the eyes of most terrestrial vertebrates (along with spiders and some insect larvae) the vitreous fluid has a higher refractive index than the air, relieving the lens of the function of reducing the focal length. This has freed it up for fine adjustments of focus, allowing a very high resolution to be obtained. As with spherical lenses, the problem of spherical aberration caused by the lens can be countered either by using an inhomogeneous lens material, or by flattening the lens. Flattening the lens has a disadvantage: the quality of vision is diminished away from the main line of focus, meaning that animals requiring all-round vision are detrimented. Such animals often display an inhomogeneous lens instead. As mentioned above, a refractive cornea is only useful out of water; in water, there is no difference in refractive index between the vitreous fluid and the surrounding water. Hence creatures which have returned to the water — penguins and seals, for example — lose their refractive cornea and return to lens-based vision. An alternative solution, borne by some divers, is to have a very strong cornea. Reflector eyes. An alternative to a lens is to line the inside of the eye with mirrors", and reflect the image to focus at a central point. The nature of these eyes means that if one were to peer into the pupil of an eye, one would see the same image that the organism would see, reflected back out. Many small organisms such as rotifers, copeopods and platyhelminths use such organs, but these are too small to produce usable images. Some larger organisms, such as scallops, also use reflector eyes. The scallop "Pecten" has up to 100 millimeter-scale reflector eyes fringing the edge of its shell. It detects moving objects as they pass successive lenses. Compound eyes. A compound eye may consist of thousands of individual photoreception units. The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarization of light. Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained. This can only be countered by increasing lens size and number — to see with a resolution comparable to our simple eyes, humans would require compound eyes which would each reach the size of their head. Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form a single erect image. Compound eyes are common in arthropods, and are also present in annelids and some bivalved molluscs. Compound eyes, in arthropods at least, grow at their margins by the addition of new ommatidia. Apposition eyes. Apposition eyes are the most common form of eye, and are presumably the ancestral form of compound eye. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by "Limulus", the horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. (Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.) Apposition eyes work by gathering a number of images, one from each eye, and combining them in the brain, with each eye typically contributing a single point of information. The typical apposition eye has a lens focusing light from one direction on the rhabdom, while light from other directions is absorbed by the dark wall of the ommatidium. In the other kind of apposition eye, found in the Strepsiptera, lenses are not fused to one another, and each forms an entire image; these images are combined in the brain. This is called the schizochroal compound eye or the neural superposition eye. Because images are combined additively, this arrangement allows vision under lower light levels. Superposition eyes. The second type is named the superposition eye. The superposition eye is divided into three types; the refracting, the reflecting and the parabolic superposition eye. The refracting superposition eye has a gap between the lens and the rhabdom, and no side wall. Each lens takes light at an angle to its axis and reflects it to the same angle on the other side. The result is an image at half the radius of the eye, which is where the tips of the rhabdoms are. This kind is used mostly by nocturnal insects. In the parabolic superposition compound eye type, seen in arthropods such as mayflies, the parabolic surfaces of the inside of each facet focus light from a reflector to a sensor array. Long-bodied decapod crustaceans such as shrimp, prawns, crayfish and lobsters are alone in having reflecting superposition eyes, which also has a transparent gap but uses corner mirrors instead of lenses. Parabolic superposition. This eye type functions by refracting light, then using a parabolic mirror to focus the image; it combines features of superposition and apposition eyes. Other. Good fliers like flies or honey bees, or prey-catching insects like praying mantis or dragonflies, have specialized zones of ommatidia organized into a fovea area which gives acute vision. In the acute zone the eye are flattened and the facets larger. The flattening allows more ommatidia to receive light from a spot and therefore higher resolution. There are some exceptions from the types mentioned above. Some insects have a so-called single lens compound eye, a transitional type which is something between a superposition type of the multi-lens compound eye and the single lens eye found in animals with simple eyes. Then there is the mysid shrimp "Dioptromysis paucispinosa". The shrimp has an eye of the refracting superposition type, in the rear behind this in each eye there is a single large facet that is three times in diameter the others in the eye and behind this is an enlarged crystalline cone. This projects an upright image on a specialized retina. The resulting eye is a mixture of a simple eye within a compound eye. Another version is the pseudofaceted eye, as seen in Scutigera. This type of eye consists of a cluster of numerous ocelli on each side of the head, organized in a way that resembles a true compound eye. The body of "Ophiocoma wendtii", a type of brittle star, is covered with ommatidia, turning its whole skin into a compound eye. The same is true of many chitons. Relationship to lifestyle. Eyes are generally | Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes — some longhorn beetles (family Cerambycidae) and weevils — while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families — Dytiscidae, Haliplidae, many species of Hydrophilidae and others — the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. Reproduction. Beetles may display extremely intricate behaviour when mating. Pheromone communication is thought to be important in the location of a mate. Conflict can play a part in the mating rituals of species such as burying beetles (genus "Nicrophorus") where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilise the egg. Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young. Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Defense. Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of colouration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various coloured scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate. Another defence that often uses colour or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defence can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their colour mimicry with behavioural mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting colour patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically-protected species. Large ground beetles and longhorn beetles may defend themselves using strong mandibles and or spines or horns to forcibly persuade a predator to seek out easier prey. Others, such as bombardier beetles (within Carabidae), may spray chemicals from their abdomen to repel predators. Feeding. Besides being abundant and varied, the Coleoptera are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialised in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences. Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species such as certain scarab beetles (family Scarabaeidae), to dead animals, which are eaten by necrophagous species such as the carrion beetles (family Silphidae). Some of the beetles found within dung and carrion are in fact predatory, such as the clown beetles, preying on the larvae of coprophagous and necrophagous insects. Adaptations to the environment. Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention while whirligig beetles simply carry an air bubble down with them whenever they dive. Evolutionary history and classification. While some authorities believe modern beetles began about 140 million years ago, research announced in 2007 showed that beetles may have entered the fossil record during the Lower Permian, about 265 to 300 million years ago. The four extant suborders of beetle are these: These suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively. There are about 350,000 species of beetles. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. Pests. Many agricultural, forestry, and household insect pests are beetles. These include the following: Beneficial organisms. Some farmers develop beetle banks to foster and provide cover for beneficial beetles. Beetles of the Dermestidae family are often used in taxidermy to clean bones of remaining flesh. Beetles in ancient Egypt and other cultures. Several species of dung beetle, most notably "Scarabaeus sacer" (often referred to as "scarab"), enjoyed a sacred status among the ancient Egyptians, as the creatures were likened to the major god Khepri. Some scholars suggest that the Egyptians' practice of making mummies was inspired by the brooding process of the beetle. Many thousands of amulets and stamp seals have been excavated that depict the scarab. In many artifacts, the scarab is depicted pushing the sun along its course in the sky, much as scarabs push or roll balls of dung to their brood sites. During and following the New Kingdom, scarab amulets were often placed over the heart of the mummified deceased. Some tribal groups, particularly in tropical parts of the world, use the colourful, iridescent elytra of certain beetles, especially certain Scarabaeidae, in ceremonies and as adornment. Study and collection. The study of beetles is called coleopterology'" (from "Coleoptera", see above, and Greek, "-logia"), and its practitioners are "coleopterists" (see this list). Coleopterists have formed organisations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organisation based in the United States. Such organisations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are: There is a thriving industry in the collection of beetle specimens for amateur and professional collectors. Many coleopterists prefer to collect beetle specimens for themselves, recording detailed information about each specimen and its habitat. Such collections add to the body of knowledge about the Coleoptera. Some countries have established laws governing or prohibiting the collection of certain rare (and often much sought after) species. One such beetle whose collection is illegal or restricted is the American burying beetle, "Nicrophorus americanus". |