ratio of word probabilities predicted from brain for door and hammer

close this window

door

hammer

top 10 words in brain distribution (in article):
material design build wood type size iron record cut time
top 10 words in brain distribution (in article):
head design animal size common time allow hand form steel
top 10 words in brain distribution (not in article):
card steel store blade service company product process provide information
top 10 words in brain distribution (not in article):
key lock switch machine type needle tube bicycle state knit
times more probable under door 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under hammer
(words not in the model)
A door'" is a moveable barrier used to cover an opening. Doors are used widely and are found in walls or partitions of a building or space, furniture such as cupboards, cages, vehicles, and containers. A door can be opened to give access and closed more or less securely using a combination of latches and locks. (See article Door security). Doors are nearly universal in buildings of all kinds, allowing passage between the inside and outside, and between internal rooms. When open, they admit ventilation and light. The door is used to control the physical atmosphere within a space by enclosing it, excluding air drafts, so that interiors may be more effectively heated or cooled. Doors are significant in preventing the spread of fire. They act as a barrier to noise. (See article Door safety). They are also used to screen areas of a building for aesthetic purposes, keeping formal and utility areas separate. Doors also have an aesthetic role in creating an impression of what lies beyond. Doors are often symbolically endowed with ritual purposes, and the guarding or receiving of the keys to a door, or being granted access to a door can have special significance. Similarly, doors and doorways frequently appear in metaphorical or allegorical situations, literature and the arts, often as a portent of change. Design and construction styles. Many kinds of doors have specific names, depending on their purpose. The most common variety of door consists of a single rigid panel that fills the doorway. Many variations on this basic design are possible, such as "double" doors that have two adjacent independent panels hinged on each side of the doorway. A "'Dutch door'" or "'stable door'" is divided in half horizontally. Traditionally the top half can be opened to allow a horse or other animal to be fed, while the bottom half remained closed to keep the animal inside. "'Saloon doors'" are a pair of lightweight swing doors often found in public bars. Saloon doors, also known as "'cafe doors'", often use "'double action hinges'", which will return the door to the center, regardless of which direction it is opened, due to the double action springs in the doors. Saloon doors that only extend from knee-level to chest-level are known as "'batwing doors'". A "'blind door'" is a door with no visible trim or operable components. It is designed to blend with the adjacent wall in all finishes, and visually to be a part of the wall, a disguised door. A "'barn door'" is a door characteristic of a barn. They are often always found on barns, and because of a barn's immense size (often) doors are subsequently big for utility. A "'French door'", also called a "'French window'", is a door that has multiple windows ("lights") set into it for the full length of the door. Traditional French doors are assembled from individual small pieces of glass and mullions. These doors are also known as true divided lite[sic] French doors. French doors made of double-pane glass (on exterior doors for insulation reasons) may have a decorative grille embedded between the panes, or may also be true divided lite French doors. The decorative grille may also be superimposed on top of single pane of glass in the door. A "'louvred door'" has fixed or movable wooden fins (often called slats or louvers) which permit open ventilation whilst preserving privacy and preventing the passage of light to the interior. Being relatively weak structures, they are most commonly used for wardrobes and drying rooms, where security is of less importance than good ventilation, although a very similar structure is commonly used to form window shutters. A "'flush door'" is a completely smooth door, having plywood or MDF fixed over a light timber frame, the hollow parts of which are often filled with a cardboard core material. Flush doors are most commonly employed in the interior of a dwelling, although slightly more substantial versions are occasionally used as exterior doors, especially within hotels and other buildings containing many independent dwellings. A "'moulded door'" has the same structure as that of flush door. The only difference is that the surface material is a moulded skin made of HDF MDF. It is commonly used as interior doors. A "'ledge and brace door'" is a door made from multiple vertical planks fixed together by two horizontal planks (the ledges) and kept square by a diagonal plank (the brace). A "'wicket door'" is a normal sized door built into a much larger one, such as the gate of a city or castle. A "'bifold door'" id="bifold"/> is a door unit that has several sections, folding in pairs. Wood is the most common material, and doors may also be metal or glass. Bifolds are most commonly made for closets, but may also be used as units between rooms. A "'sliding glass door'", sometimes called an Arcadia door, is a door made of glass that slides open and sometimes has a screen. "'Australian doors'" are a pair of plywood swinging doors often found in Australian public houses. These doors are generally red or brown in color and bear a resemblance to the more formal doors found in other British Colonies' public houses. A "'false door'" is a wall decoration that looks like a door. In ancient Egyptian architecture, this was a common element in a tomb, the false door representing a gate to the afterlife. They can also be found in the funerary architecture of the desert tribes (e.g., Libyan Ghirza). Hinged doors. Most doors are hinged along one side to allow the door to pivot away from the doorway in one direction but not in the other. The axis of rotation is usually vertical. In some cases, such as hinged garage doors often horizontal, above the door opening. Doors can be hinged so that the axis of rotation is not in the plane of the door to reduce the space required on the side to which the door opens. This requires a mechanism so that the axis of rotation is on the side other than that in which the door opens. This is sometimes the case in trains, such as for the door to the toilet, which opens inward. "'A swing door'" has special hinges that allow it to open either outwards or inwards, and is usually sprung to keep it closed. A "'Mead door'" is a double action pivot door capable of swinging both ways. First introduced by Scott Mead, established in Leicester, England. The Mead door is susceptible to forced entry. Sliding doors. It is often useful to have doors which slide along tracks, often for space or aesthetic considerations. A bypass door"' is a door unit that has two or more sections. The doors can slide in either direction along one axis on parallel overhead tracks, sliding past each other. They are most commonly used in closets, in order to access one side of the closet at a time. The doors in a bypass unit will overlap slightly when A hammer'" is a tool meant to deliver an impact to an object. The most common uses are for driving nails, fitting parts, and breaking up objects. Hammers are often designed for a specific purpose, and vary widely in their shape and structure. Usual features are a handle and a head, with most of the weight in the head. The basic design is hand-operated, but there are also many mechanically operated models for heavier uses. The hammer is a basic tool of many professions, and can also be used as a weapon. By analogy, the name "'hammer'" has also been used for devices that are designed to deliver blows, e.g. in the caplock mechanism of firearms. History. The use of simple tools dates to about 2,400,000 BCE when various shaped stones were used to strike wood, bone, or other stones to break them apart and shape them. Stones attached to sticks with strips of leather or animal sinew were being used as hammers by about 30,000 BCE during the middle of the Paleolithic Stone Age. Its archeological record means it is perhaps the oldest human tool known. Designs and variations. The essential part of a hammer is the head, a compact solid mass that is able to deliver the blow to the intended target without itself deforming. The opposite side of a ball as in the ball-peen hammer and the cow hammer. Some upholstery hammers have a magnetized appendage, to pick up tacks. In the hatchet the hammer head is secondary to the cutting edge of the tool. In recent years the handles have been made of durable plastic or rubber. The hammer varies at the top, some are larger than others giving a larger surface area to hit different sized nails and such, Mechanically-powered hammers often look quite different from the hand tools, but nevertheless most of them work on the same principle. They include: In professional framing carpentry, the hammer has almost been completely replaced by the nail gun. In professional upholstery, its chief competitor is the staple gun. Hammer as a force amplifier. A hammer is basically a force amplifier that works by converting mechanical work into kinetic energy and back. In the swing that precedes each blow, a certain amount of kinetic energy gets stored in the hammer's head, equal to the length "D" of the swing times the force "f" produced by the muscles of the arm and by gravity. When the hammer strikes, the head gets stopped by an opposite force coming from the target; which is equal and opposite to the force applied by the head to the target. If the target is a hard and heavy object, or if it is resting on some sort of anvil, the head can travel only a very short distance "d" before stopping. Since the stopping force "F" times that distance must be equal to the head's kinetic energy, it follows that "F" will be much greater than the original driving force "f" roughly, by a factor "D" "d". In this way, great strength is not needed to produce a force strong enough to bend steel, or crack the hardest stone. Effect of the head's mass. The amount of energy delivered to the target by the hammer-blow is equivalent to one half the mass of the head times the square of the head's speed at the time of impact ([Formula 1]). While the energy delivered to the target increases linearly with mass, it increases geometrically with the speed (see the effect of the handle, below). High tech titanium heads are lighter and allow for longer handles, thus increasing velocity and delivering more energy with less arm fatigue than that of a steel head hammer of the same weight. As hammers must be used in many circumstances, where the position of the person using them cannot be taken for granted, trade-offs are made for the sake of practicality. In areas where one has plenty of room, a long handle with a heavy head (like a sledge hammer) can deliver the maximum amount of energy to the target. But clearly, it's unreasonable to use a sledge hammer to drive upholstery tacks. Thus, the overall design has been modified repeatedly to achieve the optimum utility in a wide variety of situations. Effect of the handle. The handle of the hammer helps in several ways. It keeps the user's hands away from the point of impact. It provides a broad area that is better-suited for gripping by the hand. Most importantly, it allows the user to maximize the speed of the head on each blow. The primary constraint on additional handle length is the lack of space in which to swing the hammer. This is why sledge hammers, largely used in open spaces, can have handles that are much longer than a standard carpenter's hammer. The second most important constraint is more subtle. Even without considering the effects of fatigue, the longer the handle, the harder it is to guide the head of the hammer to its target at full speed. Most designs are a compromise between practicality and energy efficiency. Too long a handle: the hammer is inefficient because it delivers force to the wrong place, off-target. Too short a handle: the hammer is inefficient because it doesn't deliver enough force, requiring more blows to complete a given task. Recently, modifications have also been made with respect to the effect of the hammer on the user. A titanium head has about 3% recoil and can result in greater efficiency and less fatigue when compared to a steel head with about 27% recoil. Handles made of shock-absorbing materials or varying angles attempt to make it easier for the user to continue to wield this age-old device, even as nail guns and other powered drivers encroach on its traditional field of use. War hammers. The concept of putting a handle on a weight to make it more convenient to use may well have led to the very first weapons ever invented. The club is basically a variant of a hammer. In the Middle Ages, the war hammer became popular when edged weapons could no longer easily penetrate some forms of armour. Symbolic hammers. The hammer, being one of the most used tools by "Homo sapiens", has been used very much in symbols and arms. In the Middle Ages it was used often in blacksmith guild logos, as well as in many family symbols. The most recognised symbol with a hammer in it is the Hammer and Sickle, which was the symbol of the former Soviet Union. The hammer in this symbol represents the industrial working class (and the sickle the agricultural working class). The hammer is used in some coat of arms in (former) socialist countries like East Germany. In Norse Mythology, Thor, the god of thunder and lightning, wields a hammer named Mjolnir. Many artifacts of decorative hammers have been found leading many modern practitioners of this religion to often wear reproductions as a sign of their faith.