ratio of word probabilities predicted from brain for cow and beetle

close this window

cow

beetle

top 10 words in brain distribution (in article):
animal species cat breed male human dog wild female record
top 10 words in brain distribution (in article):
species animal bird design egg form common body allow female
top 10 words in brain distribution (not in article):
wolf hunt card bear lion elephant tiger service prey information
top 10 words in brain distribution (not in article):
vehicle wheel gear car tooth time aircraft tea wear type
times more probable under cow 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under beetle
(words not in the model)
Cattle'", colloquially referred to as "'cows'", are domesticated ungulates, a member of the subfamily Bovinae of the family Bovidae. They are raised as livestock for meat (called beef and veal), dairy products (milk), leather and as draft animals (pulling carts, plows and the like). In some countries, such as India, they are honored in religious ceremonies and revered. It is estimated that there are 1.3 billion cattle in the world today. Species of cattle. Cattle were originally identified by Carolus Linnaeus as three separate species. These were "Bos taurus", the European cattle, including similar types from Africa and Asia; "Bos indicus", the zebu; and the extinct "Bos primigenius", the aurochs. The aurochs is ancestral to both zebu and European cattle. More recently these three have increasingly been grouped as one species, with "Bos primigenius taurus", "Bos primigenius indicus" and "Bos primigenius primigenius" as the subspecies. Complicating the matter is the ability of cattle to interbreed with other closely related species. Hybrid individuals and even breeds exist, not only between European cattle and zebu but also with yaks (called a dzo), banteng, gaur, and bison ("cattalo"), a cross-genera hybrid. For example, genetic testing of the Dwarf Lulu breed, the only humpless "Bos taurus"-type" cattle in Nepal, found them to be a mix of European cattle, zebu and yak. Cattle cannot successfully be bred with water buffalo or African buffalo. The aurochs originally ranged throughout Europe, North Africa, and much of Asia. In historical times, their range was restricted to Europe, and the last animals were killed by poachers in Masovia, Poland, in 1627. Breeders have attempted to recreate cattle of similar appearance to aurochs by crossing of domesticated cattle breeds, creating the Heck cattle breed. (See also aurochs and zebu articles.) Word origin. "Cattle" did not originate as a name for bovine animals. It derives from the Latin "caput", head, and originally meant movable property, especially livestock of any kind. The word is closely related to "chattel" (a unit of personal property) and "capital" in the economic sense. Older English sources like King James Version of the Bible refer to livestock in general as cattle (as opposed to the word deer which then was used for wild animals). Additionally other species of the genus "Bos" are sometimes called wild cattle. Today, the modern meaning of "cattle", without any other qualifier, is usually restricted to domesticated bovines. Terminology of cattle. In general, the same words are used in different parts of the world but with minor differences in the definitions. The terminology described here contrasts the differences in definition between the United States and other British influenced parts of world such as Canada, Australia, New Zealand, Ireland, and the United Kingdom. Singular terminology dilemma. "Cattle" can only be used in the plural and not in the singular: it is a plurale tantum. Thus one may refer to "three cattle" or "some cattle", but not "one cattle". There is no universally used singular equivalent in modern English to "cattle", other than the gender and age-specific terms such as cow, bull, steer and heifer. Strictly speaking, the singular noun for the domestic bovine was "ox", however, "ox" today is rarely used in this general sense. An ox today generally denotes a draft beast, most commonly a castrated male (but is not to be confused with the unrelated wild musk ox). "Cow" has been in general use as a singular for the collective "cattle" in spite of the objections of those who say that it is a female-specific term, so that that phrases such as "that cow is a bull" would be absurd from a lexicographic standpoint. However, it is easy to use when a singular is needed and the gender is not known, as in "There is a cow in the road". Further, any herd of fully mature cattle in or near a pasture is statistically likely to consist mostly of cows, so the term is probably accurate even in the restrictive sense. Other than the few bulls needed for breeding, the vast majority of male cattle are castrated as calves and slaughtered for meat before the age of three years. Thus, in a pastured herd, any calves or herd bulls usually are clearly distinguishable from the cows due to distinctively different sizes and clear anatomical differences. The Oxford English Dictionary lists the use of "cows" as a synonym for "cattle" as an American usage. Merriam-Webster, a U.S. dictionary, recognizes the non-gender-specific use of "cow" as an alternate definition, whereas Collins, a UK dictionary, does not. Colloquially, more general non-specific terms may denote cattle when a singular form is needed. Australian, New Zealand and British farmers use the term "beast" or "cattle beast". "Bovine" is also used in Britain. The term "critter" is common in the western United States and Canada, particularly when referring to young cattle. In some areas of the American South (particularly the Appalachian region), where both dairy and beef cattle are present, an individual animal was once called a "beef critter", though that term is becoming archaic. Other terminology. Cattle raised for human consumption are called "beef cattle". Within the beef cattle industry in parts of the United States, the term "beef" (plural "beeves") is still used in its archaic sense to refer to an animal of either gender. Cows of certain breeds that are kept for the milk they give are called "dairy cows" or "milking cows" (formerly "milch cows" "milch" was pronounced as "milk"). Most young male offspring of dairy cows are sold for veal, and may be referred to as "veal calves." The term "dogies" was once used to describe calves and young steers in the context of ranch work in the American west, as in "Keep them dogies moving," but in modern use is considered archaic unless used in a humorous context. In some places, a cow kept to provide milk for one family is called a "house cow". Other obsolete terms for cattle include "neat" (this use survives in "neatsfoot oil", extracted from the feet and legs of cattle), and "beefing" (young animal fit for slaughter). An onomatopoeic term for one of the commonest sounds made by cattle is "moo", and this sound is also called "lowing". There are a number of other sounds made by cattle, including calves "bawling", and bulls "bellowing" (a high-pitched yodeling call). The bullroarer makes a sound similar to a territorial call made by bulls. Anatomy. Cattle have one stomach with four compartments. They are the rumen, reticulum, omasum, and abomasum, the rumen being the largest compartment. Cattle sometimes consume metal objects which are deposited in the reticulum, the smallest compartment, and this is where hardware disease occurs. The reticulum is known as the "Honeycomb." The omasum's main function is to absorb water and nutrients from the digestible feed. The omasum is known as the "Many Plies." The abomasum is like the human stomach; this is why it is known as the "true stomach". Cattle are ruminants, meaning that they have a digestive system that allows use of otherwise indigestible foods by repeatedly regurgitating and rechewing them as "cud". The cud is then reswallowed and further digested by specialised microorganisms in the rumen. These microbes are primarily responsible for decomposing cellulose and other carbohydrates into volatile fatty acids that cattle use as their primary metabolic fuel. The microbes inside of the rumen are also able to synthesize amino acids from non-protein nitrogenous sources such as urea and ammonia. As these microbes reproduce in the rumen, older generations die and their carcasses continue on through the digestive tract. These carcasses are then partially digested by the cattle, allowing it to gain a high quality protein source. These features allow cattle to thrive on grasses and other vegetation. The gestation period for a cow is nine months. A newborn calf weighs. The world record for the heaviest bull was a Chianina named Donetto, when he was exhibited at the Arezzo show in 1955. The heaviest steer was eight year old ‘Old Ben’, a Shorthorn Hereford cross weighing in at in 1910. Steers are generally killed before reaching. Breeding stock usually live to about 15 years (occasionally as much as 25 years). A common misconception about cattle (particularly bulls) is that they are enraged by the color red (something provocative is often said to be "like a red flag to a bull"). This is incorrect, as cattle are red-green color-blind. The myth arose from the use of red capes in the sport of bullfighting; in fact, two different capes are used. The capote is a large, flowing cape that is magenta and yellow. The more famous muleta is the smaller, red cape, used exclusively for the final, fatal segment of the fight. It is not the color of the cape that angers the bull, but rather the movement of the fabric that irritates the bull and incites it to charge. Although cattle cannot distinguish red from green, they do have two kinds of color receptors in their retinas (cone cells) and so are theoretically able to distinguish some colors, probably in a similar way to other red-green color-blind or dichromatic mammals (such as dogs, cats, horses and up to ten percent of male humans). Domestication and husbandry. Cattle occupy a unique role in human history, domesticated since at least the early Neolithic. They are raised for meat (beef cattle), dairy products and hides. They are also used as draft animals and in certain sports. Some consider cattle the oldest form of wealth, and cattle raiding consequently one of the earliest forms of theft. Cattle are often raised by allowing herds to graze on the grasses of large tracts of rangeland. Raising cattle in this manner allows the use of land that might be unsuitable for growing crops. The most common interactions with cattle involve daily feeding, cleaning and milking. Many routine husbandry practices involve ear tagging, dehorning, loading, medical operations, vaccinations and hoof care, as well as training for agricultural shows and preparations. There are also some cultural differences in working with cattle- the cattle husbandry of Fulani men rests on behavioural techniques, whereas in Europe cattle are controlled primarily by physical means like fences. Breeders utilise cattle husbandry to reduce M. bovis infection susceptibility by selective breeding and maintaining herd health to avoid concurrent disease. Cattle are farmed for beef, veal, dairy, leather and they are less commonly used simply to maintain grassland for wildlife- for example, in Epping Forest, England. They are often used in some of the most wild places for livestock. Depending on the breed, cattle can survive on hill grazing, heaths, marshes, moors and semi desert. Modern cows are more commercial than older breeds and, having become more specialized, are less versatile. For this reason many smaller farmers still favor old breeds, like the dairy breed of cattle Jersey. In Portugal, Spain, Southern France and some Latin American countries, bulls are used in the activity of bullfighting; a similar activity, Jallikattu, is seen in South India; in many other countries this is illegal. Other activities such as bull riding are seen as part of a rodeo, especially in North America. Bull-leaping, a central ritual in Bronze Age Minoan culture (see Bull (mythology)), still exists in southwestern France. In modern times, cattle are also entered into agricultural competitions. These competitions can involve live cattle or cattle carcasses. In terms of food intake by humans, consumption of cattle is less efficient than of grain or vegetables with regard to land use, and hence cattle grazing consumes more area than such other agricultural production. Nonetheless, cattle and other forms of domesticated animals can sometimes help to utilize plant resources in areas not easily amenable to other forms of agriculture. These factors were not as important in earlier times prior to the Earth's large human population. Environmental impact. A 400-page United Nations report from the Food and Agriculture Organization (FAO) states that cattle farming is "responsible for 18% of greenhouse gases." The production of cattle to feed and clothe humans stresses ecosystems around the world, and is assessed to be one of the top three environmental problems in the world on a local to global scale. The report, entitled "Livestock's Long Shadow", also surveys the environmental damage from sheep, chickens, pigs and goats. But in almost every case, the world's 1.5 billion cattle are cited as the greatest adverse impact with respect to climate change as well as species extinction. The report concludes that, unless changes are made, the massive damage reckoned to be due to livestock may more than double by 2050, as demand for meat increases. One of the cited changes suggests that intensification of the livestock industry may be suggested, since intensification leads to less land for a given level of production. Some microbes respire in the cattle gut by an anaerobic process known as methanogenesis (producing the gas methane). Cattle emit a large volume of methane, 95% of it through eructation or burping, not flatulence. As the carbon in the methane comes from the digestion of vegetation produced by photosynthesis, its release into the air by this process would normally be considered harmless, because there is no net increase in carbon in the atmosphere it's removed as carbon dioxide from the air by photosynthesis and returned to it as methane. Methane is a more potent greenhouse gas than carbon dioxide, having a warming effect 23 to 50 times greater, and according to Takahashi and Young "even a small increase in methane concentration in the atmosphere exerts a potentially significant contribution to global warming". Further analysis to the methane gas produced by livestock as a contributor to the increase in greenhouse gases is provided by Weart. Research is underway on methods of reducing this source of methane, by the use of dietary supplements, or treatments to reduce the proportion of methanogenetic microbes, perhaps by vaccination. Cattle are fed a concentrated high-corn diet which produces rapid weight gain, but this has side effects which include increased acidity in the digestive system. When improperly handled, manure and other byproducts of concentrated agriculture also have environmental consequences. Grazing by cattle at low intensities can create a favourable environment for native herbs and forbs; however, in most world regions cattle are reducing biodiversity due to overgrazing driven by food demands by an expanding human population. Oxen== Oxen'" (singular "'ox'") are large and heavyset breeds of "Bos taurus" cattle trained as draft animals. Often they are adult, castrated males. Usually an ox is over four years old due to the need for training and to allow it to grow to full size. Oxen are used for plowing, transport, hauling cargo, grain-grinding by trampling or by powering machines, irrigation by powering pumps, and wagon drawing. Oxen were commonly used to skid logs in forests, and sometimes still are, in low-impact select-cut logging. Oxen are most often used in teams of two, paired, for light work such as carting. In the past, teams might have been larger, with some teams exceeding twenty animals when used for logging. An ox is nothing more than a mature bovine with an "education." The education consists of the animal's learning to respond appropriately to the teamster's (ox driver's) signals. These signals are given by verbal commands or by noise (whip cracks) and many teamsters were known for their voices and language. In North America, the commands are (1) "get up", (2) "whoa", (3) "back up", (4) "gee" (turn right) and (5) "haw" (turn left). Oxen must be painstakingly trained from a young age. Their teamster must provide as many as a dozen yokes of different sizes as the animals grow. A wooden yoke is fastened about the neck of each pair so that the force of draft is distributed across their shoulders. From calves, oxen are chosen with horns since the horns hold the yoke in place when the oxen lower their heads, back up, or slow down (particularly with a wheeled vehicle going downhill). Yoked oxen cannot slow a load like harnessed horses can; the load has to be controlled downhill by other means. The gait of the ox is often important to ox trainers, since the speed the animal walks should roughly match the gait of the ox driver who must work with it. U.S. ox trainers favored larger breeds for their ability to do more work and for their intelligence. Because they are larger animals, the typical ox is the male of a breed, rather than the smaller female. Females are potentially more useful producing calves and milk. Oxen can pull harder and longer than horses, particularly on obstinate or almost un-movable loads. This is one of the reasons that teams drag logs from forests long after horses had taken over most other draft uses in Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes some longhorn beetles (family Cerambycidae) and weevils while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families Dytiscidae, Haliplidae, many species of Hydrophilidae and others the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. Reproduction. Beetles may display extremely intricate behaviour when mating. Pheromone communication is thought to be important in the location of a mate. Conflict can play a part in the mating rituals of species such as burying beetles (genus "Nicrophorus") where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilise the egg. Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young. Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Defense. Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of colouration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various coloured scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate. Another defence that often uses colour or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defence can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their colour mimicry with behavioural mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting colour patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically-protected species. Large ground beetles and longhorn beetles may defend themselves using strong mandibles and or spines or horns to forcibly persuade a predator to seek out easier prey. Others, such as bombardier beetles (within Carabidae), may spray chemicals from their abdomen to repel predators. Feeding. Besides being abundant and varied, the Coleoptera are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialised in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences. Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species such as certain scarab beetles (family Scarabaeidae), to dead animals, which are eaten by necrophagous species such as the carrion beetles (family Silphidae). Some of the beetles found within dung and carrion are in fact predatory, such as the clown beetles, preying on the larvae of coprophagous and necrophagous insects. Adaptations to the environment. Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention  while whirligig beetles simply carry an air bubble down with them whenever they dive. Evolutionary history and classification. While some authorities believe modern beetles began about 140 million years ago, research announced in 2007 showed that beetles may have entered the fossil record during the Lower Permian, about 265 to 300 million years ago. The four extant suborders of beetle are these: These suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively. There are about 350,000 species of beetles. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. Pests. Many agricultural, forestry, and household insect pests are beetles. These include the following: Beneficial organisms. Some farmers develop beetle banks to foster and provide cover for beneficial beetles. Beetles of the Dermestidae family are often used in taxidermy to clean bones of remaining flesh. Beetles in ancient Egypt and other cultures. Several species of dung beetle, most notably "Scarabaeus sacer" (often referred to as "scarab"), enjoyed a sacred status among the ancient Egyptians, as the creatures were likened to the major god Khepri. Some scholars suggest that the Egyptians' practice of making mummies was inspired by the brooding process of the beetle. Many thousands of amulets and stamp seals have been excavated that depict the scarab. In many artifacts, the scarab is depicted pushing the sun along its course in the sky, much as scarabs push or roll balls of dung to their brood sites. During and following the New Kingdom, scarab amulets were often placed over the heart of the mummified deceased. Some tribal groups, particularly in tropical parts of the world, use the colourful, iridescent elytra of certain beetles, especially certain Scarabaeidae, in ceremonies and as adornment. Study and collection. The study of beetles is called coleopterology'" (from "Coleoptera", see above, and Greek, "-logia"), and its practitioners are "coleopterists" (see this list). Coleopterists have formed organisations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organisation based in the United States. Such organisations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are: There is a thriving industry in the collection of beetle specimens for amateur and professional collectors. Many coleopterists prefer to collect beetle specimens for themselves, recording detailed information about each specimen and its habitat. Such collections add to the body of knowledge about the Coleoptera. Some countries have established laws governing or prohibiting the collection of certain rare (and often much sought after) species. One such beetle whose collection is illegal or restricted is the American burying beetle, "Nicrophorus americanus".