cat |
butterfly |
top 10 words in brain distribution (in article): animal wear light species century design head time breed type |
top 10 words in brain distribution (in article): light color species produce water bottle breed human male size |
top 10 words in brain distribution (not in article): horse iron blade drink lamp steel wolf wine handle beer |
top 10 words in brain distribution (not in article): animal drink lamp wine beer cat wolf iron hunt blade |
times more probable under cat 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under butterfly (words not in the model) | |
The cat'" ("Felis catus"), also known as the domestic cat'" or "'house cat'" to distinguish it from other felines and felids, is a small predatory carnivorous species of crepuscular mammal that is valued by humans for its companionship and its ability to hunt vermin, snakes, scorpions, and other unwanted household pests. It has been associated with humans for at least 9,500 years. A skilled predator, the cat is known to hunt over 1,000 species for food. It can be trained to obey simple commands. Individual cats have also been known to learn on their own to manipulate simple mechanisms, such as doorknobs. Cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Cats may be the most popular pet in the world, with over 600 million in homes all over the world. They are also bred and shown as registered pedigree pets. This hobby is known as the "cat fancy." Until recently the cat was commonly believed to have been domesticated in ancient Egypt, where it was a cult animal. However a 2007 study found that the lines of descent of all house cats probably run through as few as five self-domesticating African Wildcats "(Felis silvestris lybica)" circa 8000 BC, in the Near East. Size. Cats typically weigh between 2.5 and 7 kg (5.5–16 pounds); however, some, such as the Maine Coon, can exceed. Some have been known to reach up to due to overfeeding. Conversely, very small cats (less than) have been reported. The largest cat ever was officially reported to have weighed in at about (46 lb 15.25 oz). The smallest cat ever officially recorded weighed around 3 lbs (1.36 kg). Cats average about in height and in head body length (males being larger than females), with tails averaging in length. Skeleton. Cats have 7 cervical vertebrae like almost all mammals, 13 thoracic vertebrae (humans have 12), 7 lumbar vertebrae (humans have 5), 3 sacral vertebrae like most mammals (humans have 5 because of their bipedal posture), and, except for Manx cats, 22 or 23 caudal vertebrae (humans have 3 to 5, fused into an internal coccyx). The extra lumbar and thoracic vertebrae account for the cat's enhanced spinal mobility and flexibility, compared with humans. The caudal vertebrae form the tail, used by the cat as a counterbalance to the body during quick movements. Cats also have free-floating clavicle bones, which allows them to pass their body through any space into which they can fit their heads. Mouth. Cats have highly specialized teeth for the killing of prey and the tearing of meat. The premolar and first molar together compose the carnassial pair on each side of the mouth, which efficiently functions to shear meat like a pair of scissors. While this is present in canids, it is highly developed in felines. The cat's tongue has sharp spines, or papillae, useful for retaining and ripping flesh from a carcass. These papillae are small backward-facing hooks that contain keratin which also assist in their grooming. As facilitated by their oral structure, cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Ears. Thirty-two individual muscles in each ear allow for a manner of directional hearing: a cat can move each ear independently of the other. Because of this mobility, a cat can move its body in one direction and point its ears in another direction. Most cats have straight ears pointing upward. Unlike dogs, flap-eared breeds are extremely rare (Scottish Folds are one such exceptional mutation.) When angry or frightened, a cat will lay back its ears, to accompany the growling or hissing sounds it makes. Cats also turn their ears back when they are playing, or to listen to a sound coming from behind them. The angle of cats' ears is an important clue to their mood. Legs. Cats, like dogs, are digitigrades. They walk directly on their toes, with the bones of their feet making up the lower part of the visible leg. Cats are capable of walking very precisely, because like all felines they directly register; that is, they place each hind paw (almost) directly in the print of the corresponding forepaw, minimizing noise and visible tracks. This also provides sure footing for their hind paws when they navigate rough terrain. Claws. Like nearly all members of family Felidae, cats have protractable claws. In their normal, relaxed position the claws are sheathed with the skin and fur around the toe pads. This keeps the claws sharp by preventing wear from contact with the ground and allows the silent stalking of prey. The claws on the forefeet are typically sharper than those on the hind feet. Cats can voluntarily extend their claws on one or more paws. They may extend their claws in hunting or self-defense, climbing, "kneading", or for extra traction on soft surfaces (bedspreads, thick rugs, etc.). It is also possible to make a cooperative cat extend its claws by carefully pressing both the top and bottom of the paw. The curved claws may become entangled in carpet or thick fabric, which may cause injury if the cat is unable to free itself. Most cats have five claws on their front paws, and four or five on their rear paws. Because of an ancient mutation, however, domestic and feral cats are prone to polydactylyism, (particularly in the east coast of Canada and north east coast of the United States) and may have six or seven toes. The fifth front claw (the dewclaw) is proximal to the other claws. More proximally, there is a protrusion which appears to be a sixth "finger". This special feature of the front paws, on the inside of the wrists, is the carpal pad, also found on the paws of big cats and dogs. It has no function in normal walking, but is thought to be an anti-skidding device used while jumping. Skin. Cats possess rather loose skin; this allows them to turn and confront a predator or another cat in a fight, even when it has a grip on them. This is also an advantage for veterinary purposes, as it simplifies injections. In fact, the lives of cats with kidney failure can sometimes be extended for years by the regular injection of large volumes of fluid subcutaneously, which serves as an alternative to dialysis. The particularly loose skin at the back of the neck is known as the "scruff", and is the area by which a mother cat grips her kittens to carry them. As a result, cats tend to become quiet and passive when gripped there. This behavior also extends into adulthood, when a male will grab the female by the scruff to immobilize her while he mounts, and to prevent her from running away as the mating process takes place. This technique can be useful when attempting to treat or move an uncooperative cat. However, since an adult cat is heavier than a kitten, a pet cat should never be carried by the scruff, but should instead have its weight supported at the rump and hind legs, and at the chest and front paws. Often (much like a small child) a cat will lie with its head and front paws over a person's shoulder, and its back legs and rump supported under the person's arm. Senses. Cat senses are attuned for hunting. Cats have highly advanced hearing, eyesight, taste, and touch receptors, making the cat extremely sensitive among mammals. Cats' night vision is superior to humans although their vision in daylight is inferior. Cat eyes have a tapetum lucidum and cat eyes that are blue typically lack melanin and hence can show the red-eye effect (see odd-eyed cat). Humans and cats have a similar range of hearing on the low end of the scale, but cats can hear much higher-pitched sounds, up to 64 kHz, which is 1.6 octaves above the range of a human, and even one octave above the range of a dog. A domestic cat's sense of smell is about fourteen times as strong as a human's. Due to a mutation in an early cat ancestor, one of two genes necessary to taste sweetness may have been lost by the cat family. To aid with navigation and sensation, cats have dozens of movable vibrissae (whiskers) over their body, especially their face. Metabolism. Cats conserve energy by sleeping more than most animals, especially as they grow older. The daily duration of sleep varies, usually 12–16 hours, with 13–14 being the average. Some cats can sleep as much as 20 hours in a 24-hour period. The term "cat nap" refers to the cat's ability to fall asleep (lightly) for a brief period and has entered the English lexicon – someone who nods off for a few minutes is said to be "taking a cat nap". Due to their crepuscular nature, cats are often known to enter a period of increased activity and playfulness during the evening and early morning, dubbed the "evening crazies", "night crazies", "elevenses", or "mad half-hour" by some. The temperament of a cat can vary depending on the breed and socialization. Cats with oriental body types tend to be thinner and more active, while cats that have a cobby body type tend to be heavier and less active. The normal body temperature of a cat is between 38 and 39 °C (101 and 102.2 °F). A cat is considered febrile (hyperthermic) if it has a temperature of 39.5 °C (103 °F) or greater, or hypothermic if less than 37.5 °C (100 °F). For comparison, humans have a normal temperature of approximately 36.8 °C (98.6 °F). A domestic cat's normal heart rate ranges from 140 to 220 beats per minute, and is largely dependent on how excited the cat is. For a cat at rest, the average heart rate usually is between 150 and 180 bpm, about twice that of a human (average 80 bpm). Genetics. A 2007 study published in the journal "Science" asserts that all house cats are descended from a group of self-domesticating desert wildcats "Felis silvestris lybica" circa 10,000 years ago, in the Near East. The domesticated cat and its closest wild ancestor are both diploid organisms that possess 38 chromosomes, in which over 200 heritable genetic defects have been identified, many homologous to human inborn errors. Specific metabolic defects have been identified underlying many of these feline diseases. There are several genes responsible for the hair color identified. The combination of them gives different phenotypes. Features like hair length, lack of tail, or presence of a very short tail (bobtail cat) are also determined by single alleles and modified by polygenes. The Cat Genome Project, sponsored by the Laboratory of Genomic Diversity at the U.S. National Cancer Institute Frederick Cancer Research and Development Center in Frederick, Maryland, focuses on the development of the cat as an animal model for human hereditary disease, infectious disease, genome evolution, comparative research initiatives within the family Felidae, and forensic potential. All felines, including the big cats, have a genetic anomaly that may prevent them from tasting sweetness, which is a likely factor for their indifference to or avoidance of fruits, berries, and other sugary foods. Feeding and diet. Cats feed on small prey such as insects, birds, and rodents. Feral cats, or house cats who are free-fed, consume about 8 to 16 small meals in a single day. Despite this, adult cats can adapt to being fed once a day. Cats are classified as obligate carnivores, because their physiology is geared toward efficient processing of meat, and lacks efficient processes for digesting plant matter. The cat cannot produce its own taurine (an essential organic acid), and, as it is contained in flesh, the cat must eat flesh to survive (see Taurine and cats). Similarly as with its teeth, a cat's digestive tract has become specialized over time to suit meat eating, having shortened in length only to those segments of intestine best able to break down proteins and fats from animal flesh. This trait severely limits the cat's ability to properly digest, metabolize, and absorb plant-derived nutrients, as well as certain fatty acids. For example, taurine is scarce in plants but abundant in meats. It is a key amino sulfonic acid for eye health in cats. Taurine deficiency can cause a condition called macular degeneration wherein the cat's retina slowly degenerates, eventually causing irreversible blindness. Despite the cat's meat-oriented physiology, it is still quite common for a cat to supplement its carnivorous diet with small amounts of grass, leaves, shrubs, houseplants, or other plant matter. One theory suggests this behavior helps cats regurgitate if their digestion is upset; another is that it introduces fiber or trace minerals into the diet. In this context, caution is recommended for cat owners because some houseplants are harmful to cats. For example, the leaves of the Easter Lily can cause permanent and life-threatening kidney damage to cats, and Philodendron are also poisonous to cats. The Cat Fanciers' Association has a full list of plants harmful to cats. There are several vegetarian or vegan commercially available cat foods supplemented with chemically synthesized taurine and other added nutrients that attempt to address nutritional shortfalls. Cats can be selective eaters (which may be due in some way to the aforementioned mutation which caused their species to lose sugar-tasting ability). However, cats generally cannot tolerate lack of food for more than 36 hours without risking liver damage. Cats have a fondness for catnip, which is sensed by their olfactory systems. Many enjoy consuming catnip, and most will often roll in it, paw at it, and occasionally chew on it. Cats also can also develop odd eating habits. Some cats like to eat or chew on other things like plastic, paper, string, wool, or even coal. This condition is called pica and can threaten the cat's health depending on the amount and toxicity of the non-food items eaten. The condition's name comes from the Latin word for magpie, a bird which is reputed to eat almost anything. Toxic sensitivity. The liver of a cat is less effective at detoxification than those of other animals, including humans and dogs; therefore exposure to many common substances considered safe for households may be dangerous to them. In general, the cat's environment should be examined for the presence of such toxins and the problem corrected or alleviated as much as possible; in addition, where sudden or prolonged serious illness without obvious cause is observed, the possibility of toxicity must be considered, and the veterinarian informed of any such substances to which the cat may have had access. For instance, the common painkiller paracetamol or acetaminophen, sold under brand names such as Tylenol and Panadol, is extremely toxic to cats; because they naturally lack enzymes needed to digest it, even minute portions of doses safe for humans can be fatal and any suspected ingestion warrants immediate veterinary attention. Even aspirin, which is sometimes used to treat arthritis in cats, is much more toxic to them than to humans and must be administered cautiously. Similarly, application of minoxidil (Rogaine) to the skin of cats, either accidental or by well-meaning owners attempting to counter loss of fur, has sometimes proved fatal. In addition to such obvious dangers as insecticides and weed killers, other common household substances that should be used with caution in areas where cats may be exposed to them include mothballs and other naphthalene products, as well as phenol based products often used for cleaning and disinfecting near cats' feeding areas or litter boxes, such as Pine-Sol, Dettol (Lysol), hexachlorophene, "etc." which, although they are widely used without problem, have been sometimes seen to be fatal. Ethylene glycol, often used as an automotive antifreeze, is particularly appealing to cats, and as little as a teaspoonful can be fatal. Essential oils are toxic to cats and there have been reported cases of serious illnesses caused by tea tree oil, and tea tree oil-based flea treatments and shampoos. Many human foods are somewhat toxic to cats; theobromine in chocolate can cause theobromine poisoning, for instance, although few cats will eat chocolate. Toxicity in cats ingesting relatively large amounts of onions or garlic has also been reported. Even such seemingly safe items as cat food packaged in pull tab tin cans have been statistically linked to hyperthyroidism; although the connection is far from proven, suspicion has fallen on the use of bisphenol A-based plastics, another phenol based product as discussed above, to seal such cans. Many houseplants are at least somewhat toxic to many species, cats included and the consumption of such plants by cats is to be avoided. Sociability. For cats, life in close proximity with humans (and other animals kept by humans) amounts to a "symbiotic social adaptation" which has developed over thousands of years. It has been suggested that, ethologically, the human keeper of a cat functions as a sort of surrogate for the cat's mother, and that adult domestic cats live their lives in a kind of extended kittenhood, a form of behavioral neoteny. Cats may express affection towards their human companions, especially if they imprint on them at a very young age and are treated with consistent affection. Regardless of the average sociability of any given cat or of cats in general, there are still any number of cats who meet or exceed the negative feline stereotype insofar as being poorly socialized. Older cats have also been reported to sometimes develop aggressiveness towards kittens, which may include biting and scratching; this type of behavior is known as Feline Asocial Aggression. Cohabitation. One may see natural house cat behavior by observing feral domestic cats, which are social enough to form colonies. Each cat in a colony holds a distinct territory, with sexually active males having the largest territories, and neutered cats having the smallest. Between these territories are neutral areas where cats watch and greet one another without territorial conflicts. Outside these neutral areas, territory holders usually aggressively chase away stranger cats, at first by staring, hissing, and growling, and if that does not work, by short but noisy and violent attacks. Despite cohabitation in colonies, cats do not have a social survival strategy, or a pack mentality. This mainly means that an individual cat takes care of all basic needs on its own (e.g., finding food, and defending itself), and thus cats are always lone hunters; they do not hunt in groups as dogs or lions do. Cats frequently tonguebathe themselves (see hygiene). The chemistry of their saliva, expended during their frequent grooming, appears to be a natural deodorant. Thus, a cat's cleanliness would aid in decreasing the chance a prey animal could notice the cat's presence. By contrast, dog odor is an advantage in hunting, for a dog is a pack hunter; part of the pack stations itself upwind, and its odor drives prey towards the rest of the pack stationed downwind. This requires a cooperative effort, which in turn requires communication skills. No such communication skills are required of a lone hunter. Fighting. When engaged in feline-to-feline combat for self-defense, territory, reproduction, or dominance, fighting cats make themselves appear more impressive and threatening by raising their fur and arching their backs, thus increasing their apparent size. Cats also behave this way while playing. Attacks usually comprise powerful slaps to the face and body with the forepaws as well as bites, but serious damage is rare; usually the loser runs away with little more than a few scratches to the face, and perhaps the ears. Cats will also throw themselves to the ground in a defensive posture to rake with their powerful hind legs. Normally, serious negative effects will be limited to possible infections of the scratches and bites, though these have been known to sometimes kill cats if untreated. In addition, such fighting is believed to be the primary route of transmission of feline immunodeficiency virus (FIV). Sexually active males will usually be in many fights during their lives, and often have decidedly battered faces with obvious scars and cuts to the ears and nose. Not only males will fight; females will also fight over territory or to defend their kittens. Play. Domestic cats, especially young kittens, are known for their love of play. This behavior mimics hunting and is important in helping kittens learn to stalk, capture, and kill prey. Many cats cannot resist a dangling piece of string, or a piece of rope drawn randomly and enticingly across the floor. This well known love of string is often depicted in cartoons and photographs, which show kittens or cats playing with balls of yarn. It is probably related to hunting instincts, including the common practice of kittens hunting their mother's and each other's tails. If string is ingested, however, it can become caught in the cat’s stomach or intestines, causing illness, or in extreme cases, death. Due to possible complications caused by ingesting a string, string play is sometimes replaced with a laser pointer's dot, which some cats will chase. While caution is called for, there are no documented cases of feline eye damage from a laser pointer, and the combination of precision needed and low energy involved make it a remote risk. A common compromise is to use the laser pointer to draw the cat to a prepositioned toy so the cat | A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in obtect pupae). Within hours, the wings form a cuticle so hard and well-joined to the body that pupae can be picked up and handled without damage to the wings. Pupa. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding and begins "wandering" in the quest of a suitable pupation site, often the underside of a leaf. The larva transforms into a pupa (or chrysalis) by anchoring itself to a substrate and moulting for the last time. The chrysalis is usually incapable of movement, although some species can rapidly move the abdominal segments or produce sounds to scare potential predators. The pupal transformation into a butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in the adult color pattern are marked by changes in the expression of particular transcription factors in the early pupa. Adult or imago. The adult, sexually mature, stage of the insect is known as the imago. As Lepidoptera, butterflies have four wings that are covered with tiny scales (see photo). The fore and hindwings are not hooked together, permitting a more graceful flight. An adult butterfly has six legs, but in the nymphalids, the first pair is reduced. After it emerges from its pupal stage, a butterfly cannot fly until the wings are unfolded. A newly-emerged butterfly needs to spend some time inflating its wings with blood and letting them dry, during which time it is extremely vulnerable to predators. Some butterflies' wings may take up to three hours to dry while others take about one hour. Most butterflies and moths will excrete excess dye after hatching. This fluid may be white, red, orange, or in rare cases, blue. External morphology. Butterflies have two antennae, two compound eyes, and a proboscis. Adult butterflies have four wings: a forewing and hindwing on both the left and the right side of the body. The body is divided into three segments: the head, thorax, and the abdomen. They have two antennae, two compound eyes, and a proboscis. Scales. Butterflies are characterized by their scale-covered wings. The coloration of butterfly wings is created by minute scales. These scales are pigmented with melanins that give them blacks and browns, but blues, greens, reds and iridescence are usually created not by pigments but the microstructure of the scales. This structural coloration is the result of coherent scattering of light by the photonic crystal nature of the scales. The scales cling somewhat loosely to the wing and come off easily without harming the butterfly. Polymorphism. Many adult butterflies exhibit polymorphism, showing differences in appearance. These variations include geographic variants and seasonal forms. In addition many species have females in multiple forms, often with mimetic forms. Sexual dimorphism in coloration and appearance is widespread in butterflies. In addition many species show sexual dimorphism in the patterns of ultraviolet reflectivity, while otherwise appearing identical to the unaided human eye. Most of the butterflies have a sex-determination system that is represented as ZW with females being the heterogametic sex (ZW) and males homogametic (ZZ). Genetic abnormalities such as gynandromorphy also occur from time to time. In addition many butterflies are infected by "Wolbachia" and infection by the bacteria can lead to the conversion of males into females or the selective killing of males in the egg stage. Mimicry. Batesian and Mullerian mimicry in butterflies is common. Batesian mimics imitate other species to enjoy the protection of an attribute they do not share, aposematism in this case. The Common Mormon of India has female morphs which imitate the unpalatable red-bodied swallowtails, the Common Rose and the Crimson Rose. Mullerian mimicry occurs when aposematic species evolve to resemble each other, presumably to reduce predator sampling rates, the Heliconius butterflies from the Americas being a good example. Wing markings called eyespots are present in some species; these may have an automimicry role for some species. In others, the function may be intraspecies communication, such as mate attraction. In several cases, however, the function of butterfly eyespots is not clear, and may be an evolutionary anomaly related to the relative elasticity of the genes that encode the spots. Seasonal polyphenism. div name="wet-dry forms" Many of the tropical butterflies have distinctive seasonal forms. This phenomenon is termed "seasonal polyphenism" and the seasonal forms of the butterflies are called the dry-season and wet-season forms. How the season affects the genetic expression of patterns is still a subject of research. Experimental modification by ecdysone hormone treatment has demonstrated that it is possible to control the continuum of expression of variation between the wet and dry-season forms. The dry-season forms are usually more cryptic and it has been suggested that the protection offered may be an adaptation. Some also show greater dark colours in the wet-season form which may have thermoregulatory advantages by increasing ability to absorb solar radiation. Habits. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen, tree sap, rotting fruit, dung, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants although in general they do not carry as much pollen load as the Hymenoptera. They are however capable of moving pollen over greater distances. Within the Lepidoptera, the Hawkmoths and the Noctuidae are dominant as pollinators. As adults, butterflies consume only liquids and these are sucked by means of their proboscis. They feed on nectar from flowers and also sip water from damp patches. This they do for water, for energy from sugars in nectar and for sodium and other minerals which are vital for their reproduction. Several species of butterflies need more sodium than provided by nectar. They are attracted to sodium in salt and they sometimes land on people, attracted by human sweat. Besides damp patches, some butterflies also visit dung, rotting fruit or carcasses to obtain minerals and nutrients. In many species, this Mud-puddling behaviour is restricted to the males and studies have suggested that the nutrients collected are provided as a nuptial gift along with the spermatophore during mating. Butterflies sense the air for scents, wind and nectar using their antennae. The antennae come in various shapes and colours. The hesperids have a pointed angle or hook to the antennae, while most other families show knobbed antennae. The antennae are richly covered with sensillae. A butterfly's sense of taste is coordinated by chemoreceptors on the tarsi, which work only on contact, and are used to determine whether an egg-laying insect's offspring will be able to feed on a leaf before eggs are laid on it. Many butterflies use chemical signals, pheromones, and specialized scent scales (androconia) and other structures (coremata or 'Hair pencils' in the Danaidae) are developed in some species. Vision is well developed in butterflies and most species are sensitive to the ultraviolet spectrum. Many species show sexual dimorphism in the patterns of UV reflective patches. Color vision may be widespread but has been demonstrated in only a few species. Some butterflies have organs of hearing and some species are also known to make stridulatory and clicking sounds. Many butterflies, such as the Monarch butterfly, are migratory and capable of long distance flights. They migrate during the day and use the sun to orient themselves. They also perceive polarized light and use it for orientation when the sun is hidden. Many species of butterfly maintain territories and actively chase other species or individuals that may stray into them. Some species will bask or perch on chosen perches. The flight styles of butterflies are often characteristic and some species have courtship flight displays. Basking is an activity which is more common in the cooler hours of the morning. Many species will orient themselves to gather heat from the sun. Some species have evolved dark wingbases to help in gathering more heat and this is especially evident in alpine forms. Flight. Like many other members of the insect world, the lift generated by butterflies is more than what can be accounted for by steady-state, non-transitory aerodynamics. Studies using "Vanessa atalanta" in a windtunnel show that they use a wide variety of aerodynamic mechanisms to generate force. These include wake capture, vortices at the wing edge, rotational mechanisms and Weis-Fogh 'clap-and-fling' mechanisms. The butterflies were also able to change from one mode to another rapidly. (See also Insect flight) Migration. Many butterflies migrate over long distances. Particularly famous migrations being those of the Monarch butterfly from Mexico to North America, a distance of about 4,000 to 4,800 kilometres (2500-3000 miles). Other well known migratory species include the Painted Lady and several of the Danaine butterflies. Spectacular and large scale migrations associated with the Monsoons are seen in peninsular India. Migrations have been studied in more recent times using wing tags and also using stable hydrogen isotopes. Butterflies have been shown to navigate using time compensated sun compasses. They can see polarized light and therefore orient even in cloudy conditions. The polarized light in the region close to the ultraviolet spectrum is suggested to be particularly important. It is suggested that most migratory butterflies are those that belong to semi-arid areas where breeding seasons are short. The life-histories of their host plants also influence the strategies of the butterflies. Defense. Butterflies are threatened in their early stages by parasitoids and in all stages by predators, diseases and environmental factors. They protect themselves by a variety of means. Chemical defenses are widespread and are mostly based on chemicals of plant origin. In many cases the plants themselves evolved these toxic substances as protection against herbivores. Butterflies have evolved mechanisms to sequester these plant toxins and use them instead in their own defense. These defense mechanisms are effective only if they are also well advertised and this has led to the evolution of bright colours in unpalatable butterflies. This signal may be mimicked by other butterflies. These mimetic forms are usually restricted to the females. Cryptic coloration is found in many butterflies. Some like the oakleaf butterfly are remarkable imitations of leaves. As caterpillars, many defend themselves by freezing and appearing like sticks or branches. Some papilionid caterpillars resemble bird dropping in their early instars. Some caterpillars have hairs and bristly structures that provide protection while others are gregarious and form dense aggregations. Some species also form associations with ants and gain their protection (See Myrmecophile). Behavioural defenses include perching and wing positions to avoid being conspicuous. Some female Nymphalid butterflies are known to guard their eggs from parasitoid wasps. Eyespots and tails are found in many lycaenid butterflies and these divert the attention of predators from the more vital head region. An alternative theory is that these cause ambush predators such as spiders to approach from the wrong end and allow for early visual detection. A butterfly's hind wings are thought to allow the butterfly to take, swift, tight turns to evade predators. Notable species. There are between 15,000 and 20,000 species of butterflies worldwide. Some well known species from around the world include: Art. Artistic depictions of butterflies have been used in many cultures including Egyptian hieroglyphs 3500 years ago. Today, butterflies are widely used in various objects of art and jewelry: mounted in frame, embedded in resin, displayed in bottles, laminated in paper, and used in some mixed media artworks and furnishings. Butterflies have also inspired the "butterfly fairy" as an art and fictional character. Symbolism. According to the “Butterflies” chapter in by Lafcadio Hearn, a butterfly is seen as the personification of a person's soul; whether they be living, dying, or already dead. One Japanese superstition says that if a butterfly enters your guestroom and perches behind the bamboo screen, the person whom you most love is coming to see you. However, large numbers of butterflies are viewed as bad omens. When Taira no Masakado was secretly preparing for his famous revolt, there appeared in Kyoto so vast a swarm of butterflies that the people were frightened — -thinking the apparition to be a portent of coming evil. The Russian word for "butterfly", бабочка ("bábochka"), also means "bow tie". It is a diminutive of "baba" or "babka" ("woman, grandmother, cake", whence also "babushka"= "grandmother". The Ancient Greek word for "butterfly" is ψυχή ("psȳchē"), which primarily means "soul", "mind". According to Mircea Eliade's "Encyclopedia of Religion", some of the Nagas of Manipur trace their ancestry from a butterfly. In Chinese culture two butterflies flying together are a symbol of love. Also a famous Chinese folk story called Butterfly Lovers. The Taoist philosopher Zhuangzi once had a dream of being a butterfly flying without care about humanity, however when he woke up and realized it was just a dream, he thought to himself "Was I before a man who dreamt about being a butterfly, or am I now a butterfly who dreams about being a man?" In some old cultures, butterflies also symbolize rebirth into a new life after being inside a cocoon for a period of time. Jose Rizal delivered a speech in 1884 in a banquet and mentioned "the Oriental chrysalis... is about to leave its cocoon" comparing the emergence of a "new Philippines" with that of butterfly metamorphosis. He has also often used the butterfly imagery in his poems and other writings to express the Spanish Colonial Filipinos' longing for liberty. Much later, in a letter to Ferdinand Blumentritt, Rizal compared his life in exile to a weary butterfly with sun-burnt wings. Some people say that when a butterfly lands on you it means good luck. However, in Devonshire, people would traditionally rush around to kill the first butterfly of the year that they see, or else face a year of bad luck. Also, in the Philippines, a lingering black butterfly or moth in the house is taken to mean that someone in the family has died or will soon die. The idiom "butterflies in the stomach" is used to describe a state of nervousness. Technological inspiration. Researches on the wing structure of Palawan Birdwing butterflies led to new wide wingspan kite and aircraft designs. Studies on the reflection and scattering of light by the scales on wings of swallowtail butterflies led to the innovation of more efficient light-emitting diodes. The structural coloration of butterflies is inspiring nanotechnology research to produce paints that do not use toxic pigments and in the development of new display technologies. Furthermore, the discoloration and health of butterflies in butterfly farms, is now being studied for use as indicators of air quality in several cities. |