ratio of word probabilities predicted from brain for cat and beetle

close this window

cat

beetle

top 10 words in brain distribution (in article):
animal species wear light century head time male size water
top 10 words in brain distribution (in article):
species animal design form bird common body allow female egg
top 10 words in brain distribution (not in article):
horse iron blade drink lamp steel handle wolf wine beer
top 10 words in brain distribution (not in article):
vehicle wheel gear car tooth wear time tea aircraft type
times more probable under cat 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under beetle
(words not in the model)
The cat'" ("Felis catus"), also known as the domestic cat'" or "'house cat'" to distinguish it from other felines and felids, is a small predatory carnivorous species of crepuscular mammal that is valued by humans for its companionship and its ability to hunt vermin, snakes, scorpions, and other unwanted household pests. It has been associated with humans for at least 9,500 years. A skilled predator, the cat is known to hunt over 1,000 species for food. It can be trained to obey simple commands. Individual cats have also been known to learn on their own to manipulate simple mechanisms, such as doorknobs. Cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Cats may be the most popular pet in the world, with over 600 million in homes all over the world. They are also bred and shown as registered pedigree pets. This hobby is known as the "cat fancy." Until recently the cat was commonly believed to have been domesticated in ancient Egypt, where it was a cult animal. However a 2007 study found that the lines of descent of all house cats probably run through as few as five self-domesticating African Wildcats "(Felis silvestris lybica)" circa 8000 BC, in the Near East. Size. Cats typically weigh between 2.5 and 7 kg (5.5–16 pounds); however, some, such as the Maine Coon, can exceed. Some have been known to reach up to due to overfeeding. Conversely, very small cats (less than) have been reported. The largest cat ever was officially reported to have weighed in at about (46 lb 15.25 oz). The smallest cat ever officially recorded weighed around 3 lbs (1.36 kg). Cats average about in height and in head body length (males being larger than females), with tails averaging in length. Skeleton. Cats have 7 cervical vertebrae like almost all mammals, 13 thoracic vertebrae (humans have 12), 7 lumbar vertebrae (humans have 5), 3 sacral vertebrae like most mammals (humans have 5 because of their bipedal posture), and, except for Manx cats, 22 or 23 caudal vertebrae (humans have 3 to 5, fused into an internal coccyx). The extra lumbar and thoracic vertebrae account for the cat's enhanced spinal mobility and flexibility, compared with humans. The caudal vertebrae form the tail, used by the cat as a counterbalance to the body during quick movements. Cats also have free-floating clavicle bones, which allows them to pass their body through any space into which they can fit their heads. Mouth. Cats have highly specialized teeth for the killing of prey and the tearing of meat. The premolar and first molar together compose the carnassial pair on each side of the mouth, which efficiently functions to shear meat like a pair of scissors. While this is present in canids, it is highly developed in felines. The cat's tongue has sharp spines, or papillae, useful for retaining and ripping flesh from a carcass. These papillae are small backward-facing hooks that contain keratin which also assist in their grooming. As facilitated by their oral structure, cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Ears. Thirty-two individual muscles in each ear allow for a manner of directional hearing: a cat can move each ear independently of the other. Because of this mobility, a cat can move its body in one direction and point its ears in another direction. Most cats have straight ears pointing upward. Unlike dogs, flap-eared breeds are extremely rare (Scottish Folds are one such exceptional mutation.) When angry or frightened, a cat will lay back its ears, to accompany the growling or hissing sounds it makes. Cats also turn their ears back when they are playing, or to listen to a sound coming from behind them. The angle of cats' ears is an important clue to their mood. Legs. Cats, like dogs, are digitigrades. They walk directly on their toes, with the bones of their feet making up the lower part of the visible leg. Cats are capable of walking very precisely, because like all felines they directly register; that is, they place each hind paw (almost) directly in the print of the corresponding forepaw, minimizing noise and visible tracks. This also provides sure footing for their hind paws when they navigate rough terrain. Claws. Like nearly all members of family Felidae, cats have protractable claws. In their normal, relaxed position the claws are sheathed with the skin and fur around the toe pads. This keeps the claws sharp by preventing wear from contact with the ground and allows the silent stalking of prey. The claws on the forefeet are typically sharper than those on the hind feet. Cats can voluntarily extend their claws on one or more paws. They may extend their claws in hunting or self-defense, climbing, "kneading", or for extra traction on soft surfaces (bedspreads, thick rugs, etc.). It is also possible to make a cooperative cat extend its claws by carefully pressing both the top and bottom of the paw. The curved claws may become entangled in carpet or thick fabric, which may cause injury if the cat is unable to free itself. Most cats have five claws on their front paws, and four or five on their rear paws. Because of an ancient mutation, however, domestic and feral cats are prone to polydactylyism, (particularly in the east coast of Canada and north east coast of the United States) and may have six or seven toes. The fifth front claw (the dewclaw) is proximal to the other claws. More proximally, there is a protrusion which appears to be a sixth "finger". This special feature of the front paws, on the inside of the wrists, is the carpal pad, also found on the paws of big cats and dogs. It has no function in normal walking, but is thought to be an anti-skidding device used while jumping. Skin. Cats possess rather loose skin; this allows them to turn and confront a predator or another cat in a fight, even when it has a grip on them. This is also an advantage for veterinary purposes, as it simplifies injections. In fact, the lives of cats with kidney failure can sometimes be extended for years by the regular injection of large volumes of fluid subcutaneously, which serves as an alternative to dialysis. The particularly loose skin at the back of the neck is known as the "scruff", and is the area by which a mother cat grips her kittens to carry them. As a result, cats tend to become quiet and passive when gripped there. This behavior also extends into adulthood, when a male will grab the female by the scruff to immobilize her while he mounts, and to prevent her from running away as the mating process takes place. This technique can be useful when attempting to treat or move an uncooperative cat. However, since an adult cat is heavier than a kitten, a pet cat should never be carried by the scruff, but should instead have its weight supported at the rump and hind legs, and at the chest and front paws. Often (much like a small child) a cat will lie with its head and front paws over a person's shoulder, and its back legs and rump supported under the person's arm. Senses. Cat senses are attuned for hunting. Cats have highly advanced hearing, eyesight, taste, and touch receptors, making the cat extremely sensitive among mammals. Cats' night vision is superior to humans although their vision in daylight is inferior. Cat eyes have a tapetum lucidum and cat eyes that are blue typically lack melanin and hence can show the red-eye effect (see odd-eyed cat). Humans and cats have a similar range of hearing on the low end of the scale, but cats can hear much higher-pitched sounds, up to 64 kHz, which is 1.6 octaves above the range of a human, and even one octave above the range of a dog. A domestic cat's sense of smell is about fourteen times as strong as a human's. Due to a mutation in an early cat ancestor, one of two genes necessary to taste sweetness may have been lost by the cat family. To aid with navigation and sensation, cats have dozens of movable vibrissae (whiskers) over their body, especially their face. Metabolism. Cats conserve energy by sleeping more than most animals, especially as they grow older. The daily duration of sleep varies, usually 12–16 hours, with 13–14 being the average. Some cats can sleep as much as 20 hours in a 24-hour period. The term "cat nap" refers to the cat's ability to fall asleep (lightly) for a brief period and has entered the English lexicon someone who nods off for a few minutes is said to be "taking a cat nap". Due to their crepuscular nature, cats are often known to enter a period of increased activity and playfulness during the evening and early morning, dubbed the "evening crazies", "night crazies", "elevenses", or "mad half-hour" by some. The temperament of a cat can vary depending on the breed and socialization. Cats with oriental body types tend to be thinner and more active, while cats that have a cobby body type tend to be heavier and less active. The normal body temperature of a cat is between 38 and 39 °C (101 and 102.2 °F). A cat is considered febrile (hyperthermic) if it has a temperature of 39.5 °C (103 °F) or greater, or hypothermic if less than 37.5 °C (100 °F). For comparison, humans have a normal temperature of approximately 36.8 °C (98.6 °F). A domestic cat's normal heart rate ranges from 140 to 220 beats per minute, and is largely dependent on how excited the cat is. For a cat at rest, the average heart rate usually is between 150 and 180 bpm, about twice that of a human (average 80 bpm). Genetics. A 2007 study published in the journal "Science" asserts that all house cats are descended from a group of self-domesticating desert wildcats "Felis silvestris lybica" circa 10,000 years ago, in the Near East. The domesticated cat and its closest wild ancestor are both diploid organisms that possess 38 chromosomes, in which over 200 heritable genetic defects have been identified, many homologous to human inborn errors. Specific metabolic defects have been identified underlying many of these feline diseases. There are several genes responsible for the hair color identified. The combination of them gives different phenotypes. Features like hair length, lack of tail, or presence of a very short tail (bobtail cat) are also determined by single alleles and modified by polygenes. The Cat Genome Project, sponsored by the Laboratory of Genomic Diversity at the U.S. National Cancer Institute Frederick Cancer Research and Development Center in Frederick, Maryland, focuses on the development of the cat as an animal model for human hereditary disease, infectious disease, genome evolution, comparative research initiatives within the family Felidae, and forensic potential. All felines, including the big cats, have a genetic anomaly that may prevent them from tasting sweetness, which is a likely factor for their indifference to or avoidance of fruits, berries, and other sugary foods. Feeding and diet. Cats feed on small prey such as insects, birds, and rodents. Feral cats, or house cats who are free-fed, consume about 8 to 16 small meals in a single day. Despite this, adult cats can adapt to being fed once a day. Cats are classified as obligate carnivores, because their physiology is geared toward efficient processing of meat, and lacks efficient processes for digesting plant matter. The cat cannot produce its own taurine (an essential organic acid), and, as it is contained in flesh, the cat must eat flesh to survive (see Taurine and cats). Similarly as with its teeth, a cat's digestive tract has become specialized over time to suit meat eating, having shortened in length only to those segments of intestine best able to break down proteins and fats from animal flesh. This trait severely limits the cat's ability to properly digest, metabolize, and absorb plant-derived nutrients, as well as certain fatty acids. For example, taurine is scarce in plants but abundant in meats. It is a key amino sulfonic acid for eye health in cats. Taurine deficiency can cause a condition called macular degeneration wherein the cat's retina slowly degenerates, eventually causing irreversible blindness. Despite the cat's meat-oriented physiology, it is still quite common for a cat to supplement its carnivorous diet with small amounts of grass, leaves, shrubs, houseplants, or other plant matter. One theory suggests this behavior helps cats regurgitate if their digestion is upset; another is that it introduces fiber or trace minerals into the diet. In this context, caution is recommended for cat owners because some houseplants are harmful to cats. For example, the leaves of the Easter Lily can cause permanent and life-threatening kidney damage to cats, and Philodendron are also poisonous to cats. The Cat Fanciers' Association has a full list of plants harmful to cats. There are several vegetarian or vegan commercially available cat foods supplemented with chemically synthesized taurine and other added nutrients that attempt to address nutritional shortfalls. Cats can be selective eaters (which may be due in some way to the aforementioned mutation which caused their species to lose sugar-tasting ability). However, cats generally cannot tolerate lack of food for more than 36 hours without risking liver damage. Cats have a fondness for catnip, which is sensed by their olfactory systems. Many enjoy consuming catnip, and most will often roll in it, paw at it, and occasionally chew on it. Cats also can also develop odd eating habits. Some cats like to eat or chew on other things like plastic, paper, string, wool, or even coal. This condition is called pica and can threaten the cat's health depending on the amount and toxicity of the non-food items eaten. The condition's name comes from the Latin word for magpie, a bird which is reputed to eat almost anything. Toxic sensitivity. The liver of a cat is less effective at detoxification than those of other animals, including humans and dogs; therefore exposure to many common substances considered safe for households may be dangerous to them. In general, the cat's environment should be examined for the presence of such toxins and the problem corrected or alleviated as much as possible; in addition, where sudden or prolonged serious illness without obvious cause is observed, the possibility of toxicity must be considered, and the veterinarian informed of any such substances to which the cat may have had access. For instance, the common painkiller paracetamol or acetaminophen, sold under brand names such as Tylenol and Panadol, is extremely toxic to cats; because they naturally lack enzymes needed to digest it, even minute portions of doses safe for humans can be fatal and any suspected ingestion warrants immediate veterinary attention. Even aspirin, which is sometimes used to treat arthritis in cats, is much more toxic to them than to humans and must be administered cautiously. Similarly, application of minoxidil (Rogaine) to the skin of cats, either accidental or by well-meaning owners attempting to counter loss of fur, has sometimes proved fatal. In addition to such obvious dangers as insecticides and weed killers, other common household substances that should be used with caution in areas where cats may be exposed to them include mothballs and other naphthalene products, as well as phenol based products often used for cleaning and disinfecting near cats' feeding areas or litter boxes, such as Pine-Sol, Dettol (Lysol), hexachlorophene, "etc." which, although they are widely used without problem, have been sometimes seen to be fatal. Ethylene glycol, often used as an automotive antifreeze, is particularly appealing to cats, and as little as a teaspoonful can be fatal. Essential oils are toxic to cats and there have been reported cases of serious illnesses caused by tea tree oil, and tea tree oil-based flea treatments and shampoos. Many human foods are somewhat toxic to cats; theobromine in chocolate can cause theobromine poisoning, for instance, although few cats will eat chocolate. Toxicity in cats ingesting relatively large amounts of onions or garlic has also been reported. Even such seemingly safe items as cat food packaged in pull tab tin cans have been statistically linked to hyperthyroidism; although the connection is far from proven, suspicion has fallen on the use of bisphenol A-based plastics, another phenol based product as discussed above, to seal such cans. Many houseplants are at least somewhat toxic to many species, cats included and the consumption of such plants by cats is to be avoided. Sociability. For cats, life in close proximity with humans (and other animals kept by humans) amounts Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes some longhorn beetles (family Cerambycidae) and weevils while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families Dytiscidae, Haliplidae, many species of Hydrophilidae and others the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. Reproduction. Beetles may display extremely intricate behaviour when mating. Pheromone communication is thought to be important in the location of a mate. Conflict can play a part in the mating rituals of species such as burying beetles (genus "Nicrophorus") where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilise the egg. Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young. Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Defense. Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of colouration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various coloured scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate. Another defence that often uses colour or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defence can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their colour mimicry with behavioural mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting colour patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically-protected species. Large ground beetles and longhorn beetles may defend themselves using strong mandibles and or spines or horns to forcibly persuade a predator to seek out easier prey. Others, such as bombardier beetles (within Carabidae), may spray chemicals from their abdomen to repel predators. Feeding. Besides being abundant and varied, the Coleoptera are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialised in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences. Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species such as certain scarab beetles (family Scarabaeidae), to dead animals, which are eaten by necrophagous species such as the carrion beetles (family Silphidae). Some of the beetles found within dung and carrion are in fact predatory, such as the clown beetles, preying on the larvae of coprophagous and necrophagous insects. Adaptations to the environment. Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention  while whirligig beetles simply carry an air bubble down with them whenever they dive. Evolutionary history and classification. While some authorities believe modern beetles began about 140 million years ago, research announced in 2007 showed that beetles may have entered the fossil record during the Lower Permian, about 265 to 300 million years ago. The four extant suborders of beetle are these: These suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively. There are about 350,000 species of beetles. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. Pests. Many agricultural, forestry, and household insect pests are beetles. These include the following: Beneficial organisms. Some farmers develop beetle banks to foster and provide cover for beneficial beetles. Beetles of the Dermestidae family are often used in taxidermy to clean bones of remaining flesh. Beetles in ancient Egypt and other cultures. Several species of dung beetle, most notably "Scarabaeus sacer" (often referred to as "scarab"), enjoyed a sacred status among the ancient Egyptians, as the creatures were likened to the major god Khepri. Some scholars suggest that the Egyptians' practice of making mummies was inspired by the brooding process of the beetle. Many thousands of amulets and stamp seals have been excavated that depict the scarab. In many artifacts, the scarab is depicted pushing the sun along its course in the sky, much as scarabs push or roll balls of dung to their brood sites. During and following the New Kingdom, scarab amulets were often placed over the heart of the mummified deceased. Some tribal groups, particularly in tropical parts of the world, use the colourful, iridescent elytra of certain beetles, especially certain Scarabaeidae, in ceremonies and as adornment. Study and collection. The study of beetles is called coleopterology'" (from "Coleoptera", see above, and Greek, "-logia"), and its practitioners are "coleopterists" (see this list). Coleopterists have formed organisations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organisation based in the United States. Such organisations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are: There is a thriving industry in the collection of beetle specimens for amateur and professional collectors. Many coleopterists prefer to collect beetle specimens for themselves, recording detailed information about each specimen and its habitat. Such collections add to the body of knowledge about the Coleoptera. Some countries have established laws governing or prohibiting the collection of certain rare (and often much sought after) species. One such beetle whose collection is illegal or restricted is the American burying beetle, "Nicrophorus americanus".