ratio of word probabilities predicted from brain for cat and arm

close this window

cat

arm

top 10 words in brain distribution (in article):
animal wear light species century time breed design head cat
top 10 words in brain distribution (in article):
muscle bone human animal structure nerve contain branch join limb
top 10 words in brain distribution (not in article):
horse drink iron blade lamp wolf wine steel beer handle
top 10 words in brain distribution (not in article):
cell body form brain tissue organism function organ bacterium type
times more probable under cat 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under arm
(words not in the model)
The cat'" ("Felis catus"), also known as the domestic cat'" or "'house cat'" to distinguish it from other felines and felids, is a small predatory carnivorous species of crepuscular mammal that is valued by humans for its companionship and its ability to hunt vermin, snakes, scorpions, and other unwanted household pests. It has been associated with humans for at least 9,500 years. A skilled predator, the cat is known to hunt over 1,000 species for food. It can be trained to obey simple commands. Individual cats have also been known to learn on their own to manipulate simple mechanisms, such as doorknobs. Cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Cats may be the most popular pet in the world, with over 600 million in homes all over the world. They are also bred and shown as registered pedigree pets. This hobby is known as the "cat fancy." Until recently the cat was commonly believed to have been domesticated in ancient Egypt, where it was a cult animal. However a 2007 study found that the lines of descent of all house cats probably run through as few as five self-domesticating African Wildcats "(Felis silvestris lybica)" circa 8000 BC, in the Near East. Size. Cats typically weigh between 2.5 and 7 kg (5.5–16 pounds); however, some, such as the Maine Coon, can exceed. Some have been known to reach up to due to overfeeding. Conversely, very small cats (less than) have been reported. The largest cat ever was officially reported to have weighed in at about (46 lb 15.25 oz). The smallest cat ever officially recorded weighed around 3 lbs (1.36 kg). Cats average about in height and in head body length (males being larger than females), with tails averaging in length. Skeleton. Cats have 7 cervical vertebrae like almost all mammals, 13 thoracic vertebrae (humans have 12), 7 lumbar vertebrae (humans have 5), 3 sacral vertebrae like most mammals (humans have 5 because of their bipedal posture), and, except for Manx cats, 22 or 23 caudal vertebrae (humans have 3 to 5, fused into an internal coccyx). The extra lumbar and thoracic vertebrae account for the cat's enhanced spinal mobility and flexibility, compared with humans. The caudal vertebrae form the tail, used by the cat as a counterbalance to the body during quick movements. Cats also have free-floating clavicle bones, which allows them to pass their body through any space into which they can fit their heads. Mouth. Cats have highly specialized teeth for the killing of prey and the tearing of meat. The premolar and first molar together compose the carnassial pair on each side of the mouth, which efficiently functions to shear meat like a pair of scissors. While this is present in canids, it is highly developed in felines. The cat's tongue has sharp spines, or papillae, useful for retaining and ripping flesh from a carcass. These papillae are small backward-facing hooks that contain keratin which also assist in their grooming. As facilitated by their oral structure, cats use a variety of vocalizations and types of body language for communication, including meowing, purring, hissing, growling, squeaking, chirping, clicking, and grunting. Ears. Thirty-two individual muscles in each ear allow for a manner of directional hearing: a cat can move each ear independently of the other. Because of this mobility, a cat can move its body in one direction and point its ears in another direction. Most cats have straight ears pointing upward. Unlike dogs, flap-eared breeds are extremely rare (Scottish Folds are one such exceptional mutation.) When angry or frightened, a cat will lay back its ears, to accompany the growling or hissing sounds it makes. Cats also turn their ears back when they are playing, or to listen to a sound coming from behind them. The angle of cats' ears is an important clue to their mood. Legs. Cats, like dogs, are digitigrades. They walk directly on their toes, with the bones of their feet making up the lower part of the visible leg. Cats are capable of walking very precisely, because like all felines they directly register; that is, they place each hind paw (almost) directly in the print of the corresponding forepaw, minimizing noise and visible tracks. This also provides sure footing for their hind paws when they navigate rough terrain. Claws. Like nearly all members of family Felidae, cats have protractable claws. In their normal, relaxed position the claws are sheathed with the skin and fur around the toe pads. This keeps the claws sharp by preventing wear from contact with the ground and allows the silent stalking of prey. The claws on the forefeet are typically sharper than those on the hind feet. Cats can voluntarily extend their claws on one or more paws. They may extend their claws in hunting or self-defense, climbing, "kneading", or for extra traction on soft surfaces (bedspreads, thick rugs, etc.). It is also possible to make a cooperative cat extend its claws by carefully pressing both the top and bottom of the paw. The curved claws may become entangled in carpet or thick fabric, which may cause injury if the cat is unable to free itself. Most cats have five claws on their front paws, and four or five on their rear paws. Because of an ancient mutation, however, domestic and feral cats are prone to polydactylyism, (particularly in the east coast of Canada and north east coast of the United In anatomy, an arm'" is one of the upper limbs of an animal. The term "arm" can also be used for analogous structures, such as one of the paired upper limbs of a four-legged animal, or the arms of cephalopods. In the lexicon of human anatomy, the term "arm" refers specifically to the segment between the shoulder and the elbow. The segment between the elbow and wrist is the forearm. However, in colloquial speech the term "arm" often refers to the entire upper limb from shoulder to wrist. In primates the arms are richly adapted for both climbing and for more skilled, manipulative tasks. The ball and socket shoulder joint allows for movement of the arms in a wide circular plane, while the presence of two forearm bones which can rotate around each other allows for additional range of motion at this level. Anatomy of the human arm. The human arm contains 30 bones, joints, muscles, nerves, and blood vessels. Many of these muscles are used for everyday tasks. Bony structure and joints. The humerus is the (upper) arm bone. It joins with the scapula above at the shoulder joint (or glenohumeral joint) and with the ulna and radius below at the elbow joint. Elbow joint. The elbow joint is the hinge joint between the distal end of the humerus and the proximal ends of the radius and ulna. The humerus cannot be broken easily. Its strength allows it to handle loading up to 300lbs. Osteofascial compartments. The arm is divided by a fascial layer (known as lateral and medial intermuscular septa) separating the muscles into two "osteofascial compartments": The fascia merges with the periosteum (outer bone layer) of the humerus. The compartments contain muscles which are innervated by the same nerve and perform the same action. Two other muscles are considered to be partially in the arm: Cubital fossa. The cubital fossa is clinically important for venepuncture and for blood pressure measurement. It is an imaginary triangle with borders being: The structures which pass through the cubital fossa are vital. The order from which they pass into the forearm are as follows, from medial to lateral: Nerve supply. The musculocutaneous nerve, from C5, C6, C7, is the main supplier of muscles of the anterior compartment. It originates from the lateral cord of the brachial plexus of nerves. It pierces the coracobrachialis muscle and gives off branches to the muscle, as well as to brachialis and biceps brachii. It terminates as the anterior cutaneous nerve of the forearm. The radial nerve, which is from the fifth cervical spinal nerve to the first thoracic spinal nerve, originates as the continuation of the posterior cord of the brachial plexus. This nerve enters the lower triangular space (an imaginary space bounded by, amongst others, the shaft of the humerus and the triceps brachii) of the arm and lies deep to the triceps brachii. Here it travels with a deep artery of the arm (the profunda brachii), which sits in the radial groove of the humerus. This fact is very important clinically as a fracture of the bone at the shaft of the bone here can cause lesions or even transections in the nerve. Other nerves passing through give no supply to the arm. These include: Arteries. The main artery in the arm is the brachial artery. This artery is a continuation of the axillary artery. The point at which the axillary becomes the brachial is distal to the lower border of teres major. The brachial artery gives off an important branch, the profunda brachii (deep artery of the arm). This branching occurs just below the lower border of teres major. The brachial artery continues to the cubital fossa in the anterior compartment of the arm. It travels in a plane between the biceps and triceps muscles, the same as the median nerve and basilic vein. It is accompanied by venae comitantes (accompanying veins). It gives branches to the muscles of the anterior compartment. The artery is in between the median nerve and the tendon of the biceps muscle in the cubital fossa. It then continues into the forearm. The profunda brachii travels through the lower triangular space with the radial nerve. From here onwards it has an intimate relationship with the radial nerve. They are both found deep to the triceps muscle and are located on the spiral groove of the humerus. Therefore fracture of the bone may not only lead to lesion of the radial nerve, but also haematoma of the internal structures of the arm. The artery then continues on to anastamose with the recurrent radial branch of the brachial artery, providing a diffuse blood supply for the elbow joint. Veins. The veins of the arm carry blood from the extremities of the limb, as well as drain the arm itself. The two main veins are the basilic and the cephalic veins. There is a connecting vein between the two, the median cubital vein, which passes through the cubital fossa and is clinically important for venepuncture (withdrawing blood). The basilic vein travels on the medial side of the arm and terminates at the level of the seventh rib. The cephalic vein travels on the lateral side of the arm and terminates as the axillary vein. It passes through the deltopectoral triangle, a space between the deltoid and the pectoralis major muscles. Fractures. Clavicle · Humerus · Monteggia · Galeazzi · Colles' · Smith's · Barton's · Scaphoid · Rolando · Bennett's · Boxer's. Distal Radius · Scapular