ratio of word probabilities predicted from brain for bed and car

close this window

bed

car

top 10 words in brain distribution (in article):
build house people time world century form common sexual refer
top 10 words in brain distribution (in article):
city build store state time cell Unite species form animal
top 10 words in brain distribution (not in article):
city store street town state home tea Unite love term
top 10 words in brain distribution (not in article):
church house street town home station bishop live local village
times more probable under bed 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under car
(words not in the model)
A bed'" is a piece of furniture (or a location) used as a place to sleep, and as a primary place for relaxation and sexual intercourse. To make beds more comfortable, mattresses are usually placed on top of them. The second layer is the box spring Inner-sprung Base. The box spring or "divan" is a large mattress-sized box containing wood and springs that provide additional support and suspension for the mattress. The box spring will typically lie on a bed frame(which lifts the mattress mattress-box spring off the ground) or on slats (usually made of 2" x 4" wood). A "headboard", "side rails", and "footboard" or "front rail" will complete the bed. "Headboard only" beds often incorporate a "dust ruffle", "bed skirt", or "valance sheet" to hide the bed frame. For greater head support, most people use a pillow, placed at the top of a mattress. Also used is some form of covering blanket to insulate the sleeper, often bed sheets, a quilt, or a duvet. Also, some people prefer to dispense with the box spring and bed frame, and replace it with a platform bed style. This is more common in Europe and Japan. The Ancient World. Early beds were little more than piles of straw or some other natural materials. An important change was raising them off the ground, to avoid draughts, dirt, and pests. The Egyptians had high bedsteads which were ascended by steps, with bolsters or pillows, and curtains to hang round. The elite of Egyptian society such as its pharaohs and queens even had beds made of wood and gilded with gold. Often there was a head-rest as well, semi-cylindrical and made of stone, wood or metal. Assyrians, Medes and Persians had beds of a similar kind, and frequently decorated their furniture with inlays or appliqués of metal, mother-of-pearl and ivory. The oldest account of a bed is probably that of Odysseus: a charpoy woven of rope, plays a role in the Odyssey. A similar bed can be seen at the St Fagans National History Museum in Wales. Odysseus also gives an account of how he crafted the nuptial bed for himself and Penelope, out of an ancient, huge olive tree trunk that used to grow on the spot before the bridal chamber was built. His detailed description finally persuades the doubting Penelope that the shipwrecked, aged man is indeed her long-lost husband. Homer also mentions the inlaying of the woodwork of beds with gold, silver and ivory.The Greek bed had a wooden frame, with a board at the head and bands of hide laced across, upon which skins were placed. At a later period the bedstead was often veneered with expensive woods; sometimes it was of solid ivory veneered with tortoise-shell and with silver feet; often it was of bronze. The pillows and coverings also became more costly and beautiful; the most celebrated places for their manufacture were Miletus, Corinth and Carthage. Folding beds, too, appear in the vase paintings. The Roman mattresses were stuffed with reeds, hay, wool or feathers; the last was used towards the end of the Republic, when custom demanded luxury. Small cushions were placed at the head and sometimes at the back. The bedsteads were high and could only be ascended by the help of steps. They were often arranged for two persons, and had a board or railing at the back as well as the raised portion at the head. The counterpanes were sometimes very costly, generally purple embroidered with figures in gold; and rich hangings fell to the ground masking the front. The bedsteads themselves were often of bronze inlaid with silver, and Elagabalus had one of solid silver. In the walls of some of the houses at Pompeii bed niches are found which were probably closed by curtains or sliding partitions. Ancient Romans had various kinds of beds for repose. These included: Medieval Europe. The ancient Germans lay on the floor on beds of leaves covered with skins, or in a kind of shallow chest filled with leaves and moss. In the early middle ages they laid carpets on the floor or on a bench against the wall, placed upon them mattresses stuffed with feathers, wool or hair, and used skins as a covering. They appear to have generally lain naked in bed, wrapping themselves in the large linen sheets which were stretched over the cushions. In the 13th century luxury increased, and bedsteads were made of wood much decorated with inlaid, carved and painted ornament. They also used folding beds, which served as couches by day and had cushions covered with silk laid upon leather. At night a linen sheet was spread and pillows placed, while silk-covered skins served as coverlets. Curtains were hung from the ceiling or from an iron arm projecting from the wall. The Carolingian manuscripts show metal bedsteads much higher at the head than at the feet, and this shape continued in use until the 13th century in France, many cushions being added to raise the body to a sloping position. In the 12th-century manuscripts the bedsteads appear much richer, with inlays, carving and painting, and with embroidered coverlets and mattresses in harmony. Curtains were hung above the bed, and a small hanging lamp is often shown. In the 14th century the woodwork became of less importance, being generally entirely covered by hangings of rich materials. Silk, velvet and even cloth of gold were much used. Inventories from the beginning of the 14th century give details of these hangings lined with fur and richly embroidered. Then it was that the tester bed made its first appearance, the tester being slung from the ceiling or fastened to the walls, a form which developed later into a room within a room, shut in by double curtains, sometimes even so as to exclude all drafts. The space between bed and wall was called the "ruelle", and very intimate friends were received there. In the 15th century beds became very large, reaching to 7 or 8 feet by 6 or 7 feet. The mattresses were often filled with pea-shucks, straw or feathers. At this time great personages were in the habit of carrying most of their property about with them, including beds and bed-hangings, and for this reason the bedsteads were for the most part mere frameworks to be covered up; but about the beginning of the 16th century bedsteads were made lighter and more decorative, since the lords remained in the same place for longer periods. Renaissance and Modern Europe. In the 17th century, which has been called "the century of magnificent beds," the style "a la duchesse", with tester and curtains only at the head, replaced the more enclosed beds in France, though they lasted much longer in England. Louis XIV had an enormous number of sumptuous beds, as many as 413 being described in the inventories of his palaces. Some of them had embroideries enriched with pearls, and figures on a silver or golden ground. The great bed at Versailles had crimson velvet curtains on which "The Triumph of Venus" was embroidered. So much gold was used that the velvet scarcely showed. In the 18th century feather pillows were first used as coverings in Germany, which in the fashions of the bed and the curious etiquette connected with the bedchamber followed France for the most part. The beds were "a la duchesse", but in France itself there was great variety both of name and shape. The custom of the "bed of justice" upon which the king of France reclined when he was present in parliament, the princes being seated, the great officials standing, and the lesser officials kneeling, was held to denote the royal power even more than the throne. Louis XI is credited with its first use, and the custom lasted till the end of the monarchy. In the "chambre de parade", where the ceremonial bed was placed, certain persons, such as ambassadors or great lords, whom it was desired to honour, were received in a more intimate fashion than the crowd of courtiers. At Versailles women received their friends in their beds, both before and after childbirth, during periods of mourning, and even directly after marriage; in fact in any circumstances which were thought deserving of congratulation or condolence. During the 17th century this curious custom became general, perhaps to avoid the tiresome details of etiquette. Portable beds were used in high society in France till the end of the "ancien regime". The earliest of which mention has been found belonged to Charles the Bold. They had curtains over a light framework, and were in their way as fine as the stationary beds. Iron beds appear in the 18th century; the advertisements recommend them as free from the insects which sometimes infested wooden bedsteads. Elsewhere, there was also the closed bed with sliding or folding shutters, and in England, where beds were commonly quite simple in form, the four poster was the usual citizen's bed until the middle of the 19th century. Bed sizes. Beds come in a wide array of shapes and sizes. Most countries have a standard set of four sizes of mattresses. While the "Double" size appears to be standard among English speaking countries, based on the imperial measurement of 4 ft 6 in by 6 ft 3 in, the sizes for other bed types tend to vary. The European sizes differ; they are based on the metric system. A king-sized bed differs from the other sizes in implementation, as it is not common to have a king-sized box spring; rather, two smaller box-springs are used under a king-sized mattress. It is a common misconception that on a U.S. "Standard" or "Eastern King", the box springs are identical in size to a "Twin Extra-Long," however "Twin Extra-Long" mattresses next to each other add up to 78 inches wide instead of the 76 inch width that is standard for an "Eastern King." Standard sizes. Modern manufacturing conventions have resulted in a limited number of standard sizes of commercial bedding for mattresses and box springs. They vary by country of origin. The sizes in the UK and Ireland, other than the "Double", vary compared to the U.S. sizes, being generally smaller. The U.S. "Queen" corresponds to UK "King" and "King" to "Super King". The European or continental basic sizes are similar to the UK but have a set length of 2 metres. The denominations Queen, King and Super King are not used in continental Europe, and "Double" refers to 140cm or any higher width. Instead of these US UK denominations, the bed width is given in centimetres. These dimensions are for the mattress—the actual bed frame will be a little bigger in order to fully encompass and support the mattress. The thickness of the mattress may vary considerably. Other European sizes. Modern continental Europe practice is to refer to a bed by explicit width or size ("80 cm bed" or "80x200 cm bed"). Other sizes found include: In France, Spain and Mexico, the length of older beds is sometimes 1.9 metres instead of 2 metres. Most mattress sizes in the Netherlands are also available in extra long, meaning 2.2 m instead of 2.0 m. In the Scandinavian countries, standards vary from one country to another. In Norway, these sizes are used: Small single: 0.75 x 2m (30 x 79 inches) Single: 0.90 x 2m (35.5 x 79 inches) Large Single: 1.2m x 2m (47 x 79 inches) Queen: 1.50 x 2m (60 x 79 inches, equal to two small single mattresses) King: 1.80 x 2m (71 x 79 inches, equal to two single mattresses) Beds mattresses are often available also in "extra long" (2.2m or 86.6 inches length). Some older beds are only 1.9m (75 inches) long, while antique beds often are even shorter (since they in older times often slept in a reclined position rather than the close to supine position which is common today). Other New Zealand sizes. The following bed sizes are available in New Zealand: Types of beds. There are many varieties of beds: Bed frames. Bed frames, also called bed steads, are made of wood or metal. The frame is made up of head, foot, and side rails. For heavy duty or larger frames (such as for queen- and king-sized beds), the bed frame also includes a center support rail. These rails are assembled to create a box for the mattress or mattress box spring to sit on. Though not truly parts of a bed frame, many people include headboards, footboards, and bed rails in their definition of bed frames. Headboards and footboards can be wood or metal. They can be stained, painted, or covered in fabric or leather. Bed rails are made of wood or metal and are attached to a headboard and footboard. Wooden slats are placed perpendicular to the bed rails to support the mattress mattress box spring. Bed rails and frames are often attached to the bed post using knock-down fittings. A knock-down fitting enables the bed to be easily dismantled for removal. Primary knock-down fittings for bed rails are as follows: Safety rails can be added to the sides of a bed (normally a children's bed) to stop anyone falling out of the sides of the bed. A safety rail is normally a piece of wood that attaches to the side rails on one or both sides of the bed. They are made so that they can be easily removed when no longer required. An automobile'" or "'motor car'" is a wheeled motor vehicle for transporting passengers, which also carries its own engine or motor. Most definitions of the term specify that automobiles are designed to run primarily on roads, to have seating for one to eight people, to typically have four wheels, and to be constructed principally for the transport of people rather than goods. However, the term "automobile" is far from precise, because there are many types of vehicles that do similar tasks. As of 2002, there were 590 million passenger cars worldwide (roughly one car per eleven people). Etymology. The word automobile'" comes, via the French "automobile", from the Ancient Greek word αὐτός ("autós", "self") and the Latin "mobilis" ("movable"); meaning a vehicle that moves itself, rather than being pulled or pushed by a separate animal or another vehicle. The alternative name "car" is believed to originate from the Latin word "carrus" or "carrum" ("wheeled vehicle"), or the Middle English word "carre" ("cart") (from Old North French), or "karros" (a Gallic wagon). History. Although Nicolas-Joseph Cugnot is often credited with building the first self-propelled mechanical vehicle or automobile in about 1769 by adapting an existing horse-drawn vehicle, this claim is disputed by some, who doubt Cugnot's three-wheeler ever ran or was stable. Ferdinand Verbiest, a member of a Jesuit mission in China, built the first steam-powered vehicle around 1672 which was of small scale and designed as a toy for the Chinese Emperor that was unable to carry a driver or a passenger, but quite possibly, was the first working steam-powered vehicle ('auto-mobile'). What is not in doubt is that Richard Trevithick built and demonstrated his "Puffing Devil" road locomotive in 1801, believed by many to be the first demonstration of a steam-powered road vehicle although it was unable to maintain sufficient steam pressure for long periods, and would have been of little practical use. In Russia, in the 1780s, Ivan Kulibin developed a human-pedalled, three-wheeled carriage with modern features such as a flywheel, brake, gear box, and bearings; however, it was not developed further. François Isaac de Rivaz, a Swiss inventor, designed the first internal combustion engine, in 1806, which was fueled by a mixture of hydrogen and oxygen and used it to develop the world's first vehicle, albeit rudimentary, to be powered by such an engine. The design was not very successful, as was the case with others such as Samuel Brown, Samuel Morey, and Etienne Lenoir with his hippomobile, who each produced vehicles (usually adapted carriages or carts) powered by clumsy internal combustion engines. In November 1881 French inventor Gustave Trouvé demonstrated a working three-wheeled automobile that was powered by electricity. This was at the International Exhibition of Electricity in Paris. Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on the problem at about the same time, Karl Benz'" generally is acknowledged as the inventor of the modern automobile. An automobile powered by his own four-stroke cycle gasoline engine was built in Mannheim, Germany by Karl Benz in 1885 and granted a patent in January of the following year under the auspices of his major company, Benz & Cie., which was founded in 1883. It was an integral design, without the adaptation of other existing components and including several new technological elements to create a new concept. This is what made it worthy of a patent. He began to sell his production vehicles in 1888. In 1879 Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first "Motorwagen" was built in 1885 and he was awarded the patent for its invention as of his application on January 29, 1886. Benz began promotion of the vehicle on July 3, 1886 and approximately 25 Benz vehicles were sold between 1888 and 1893, when his first four-wheeler was introduced along with a model intended for affordability. They also were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz automobile to his line of products. Because France was more open to the early automobiles, initially more were built and sold in France through Roger than Benz sold in Germany. In 1896, Benz designed and patented the first internal-combustion flat engine, called a "boxermotor" in German. During the last years of the nineteenth century, Benz was the largest automobile company in the world with 572 units produced in 1899 and because of its size, Benz & Cie., became a joint-stock company. Daimler and Maybach founded Daimler Motoren Gesellschaft (Daimler Motor Company, DMG) in Cannstatt in 1890 and under the brand name, "Daimler", sold their first automobile in 1892, which was a horse-drawn stagecoach built by another manufacturer, that they retrofitted with an engine of their design. By 1895 about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after falling out with their backers. Benz and the Maybach and Daimler team seem to have been unaware of each other's early work. They never worked together because by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG. Daimler died in 1900 and later that year, Maybach designed an engine named "Daimler-Mercedes", that was placed in a specially-ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG automobile was produced and the model was named Mercedes after the Maybach engine which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the "Daimler" brand name were sold to other manufacturers. Karl Benz proposed co-operation between DMG and Benz & Cie. when economic conditions began to deteriorate in Germany following the First World War, but the directors of DMG refused to consider it initially. Negotiations between the two companies resumed several years later when these conditions worsened and, in 1924 they signed an "Agreement of Mutual Interest", valid until the year 2000. Both enterprises standardized design, production, purchasing, and sales and they advertised or marketed their automobile models jointly—although keeping their respective brands. On June 28, 1926, Benz & Cie. and DMG finally merged as the "Daimler-Benz" company, baptizing all of its automobiles "Mercedes Benz" as a brand honoring the most important model of the DMG automobiles, the Maybach design later referred to as the "1902 Mercedes-35hp", along with the Benz name. Karl Benz remained a member of the board of directors of Daimler-Benz until his death in 1929 and at times, his two sons participated in the management of the company as well. In 1890, Emile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines and so laid the foundation of the automobile industry in France. The first design for an American automobile with a gasoline internal combustion engine was drawn in 1877 by George Selden of Rochester, New York, who applied for a patent for an automobile in 1879, but the patent application expired because the vehicle was never built and proved to work (a requirement for a patent). After a delay of sixteen years and a series of attachments to his application, on November 5, 1895, Selden was granted a United States patent for a two-stroke automobile engine, which hindered, more than encouraged, development of automobiles in the United States. His patent was challenged by Henry Ford and others, and overturned in 1911. In Britain there had been several attempts to build steam cars with varying degrees of success with Thomas Rickett even attempting a production run in 1860. Santler from Malvern is recognized by the Veteran Car Club of Great Britain as having made the first petrol-powered car in the country in 1894 followed by Frederick William Lanchester in 1895 but these were both one-offs. The first production vehicles in Great Britain came from the Daimler Motor Company, a company founded by Harry J. Lawson in 1896 after purchasing the right to use the name of the engines. Lawson's company made its first automobiles in 1897 and they bore the name "Daimler". In 1892, German engineer Rudolf Diesel was granted a patent for a "New Rational Combustion Engine". In 1897 he built the first Diesel Engine. Steam-, electric-, and gasoline-powered vehicles competed for decades, with gasoline internal combustion engines achieving dominance in the 1910s. Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda's version of the Wankel engine has had more than very limited success. Production. The large-scale, production-line manufacturing of affordable automobiles was debuted by Ransom Olds at his Oldsmobile factory in 1902. This concept was greatly expanded by Henry Ford, beginning in 1914. As a result, Ford's cars came off the line in fifteen minute intervals, much faster than previous methods, increasing productivity eight fold (requiring 12.5 man-hours before, 1 hour 33 minutes after), while using less manpower. It was so successful, paint became a bottleneck. Only Japan black would dry fast enough, forcing the company to drop the variety of colors available before 1914, until fast-drying Duco lacquer was developed in 1926. This is the source of Ford's apocryphal remark, "any color as long as it's black". In 1914, an assembly line worker could buy a Model T with four months' pay. Ford's complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury. The combination of high wages and high efficiency is called "Fordism," and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the United States. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods. In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroen was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going broke; by 1930, 250 companies which did not, had disappeared. Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910-1911), independent suspension, and four-wheel brakes. Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced automobile design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, so buyers could "move up" as their fortunes improved. Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; by the 1990s, corporate drivetrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as Apperson, Cole, Dorris, Haynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left. In Europe much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford's practise of vertical integration, buying Hotchkiss (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41% of total British car production. Most British small-car assemblers, from Abbey to Xtra had gone under. Citroen did the same in France, coming to cars in 1919; between them and other cheap cars in reply such as Renault's 10CV and Peugeot's 5CV, they produced 550,000 cars in 1925, and Mors, Hurtu, and others could not compete. Germany's first mass-manufactured car, the Opel 4PS "Laubfrosch" (Tree Frog), came off the line at Russelsheim in 1924, soon making Opel the top car builder in Germany, with 37.5% of the market. Fuel and propulsion technologies. Most automobiles in use today are propelled by gasoline (also known as petrol) or diesel internal combustion engines, which are known to cause air pollution and are also blamed for contributing to climate change and global warming. Increasing costs of oil-based fuels, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for automobiles. Efforts to improve or replace existing technologies include the development of hybrid vehicles, and electric and hydrogen vehicles which do not release pollution into the air. Diesel. Diesel-engined cars have long been popular in Europe with the first models being introduced in the 1930s by Mercedes Benz and Citroen. The main benefit of diesel engines is a 50% fuel burn efficiency compared with 27% in the best gasoline engines. A down-side of the Diesel engine is that better filters are required to reduce the presence in the exhaust gases of fine soot particulates called diesel particulate matter. Manufacturers are now starting to fit diesel particulate filters to remove the soot. Many diesel-powered cars can run with little or no modifications on 100% biodiesel and combinations of other organic oils. Gasoline. Gasoline engines have the advantage over diesel in being lighter and able to work at higher rotational speeds and they are the usual choice for fitting in high-performance sports cars. Continuous development of gasoline engines for over a hundred years has produced improvements in efficiency and reduced pollution. The carburetor was used on nearly all road car engines until the 1980s but it was long realised better control of the fuel air mixture could be achieved with fuel injection. Indirect fuel injection was first used in aircraft engines from 1909, in racing car engines from the 1930s, and road cars from the late 1950s. Gasoline Direct Injection (GDI) is now starting to appear in production vehicles such as the 2007 (Mark II) BMW Mini. Exhaust gases are also cleaned up by fitting a catalytic converter into the exhaust system. Clean air legislation in many of the car industries most important markets has made both catalysts and fuel injection virtually universal fittings. Most modern gasoline engines also are capable of running with up to 15% ethanol mixed into the gasoline; older vehicles may have seals and hoses that can be harmed by ethanol. With a small amount of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85%. 100% ethanol is used in some parts of the world (such as Brazil), but vehicles must be started on pure gasoline and switched over to ethanol once the engine is running. Most gasoline engined cars can also run on LPG with the addition of an LPG tank for fuel storage and carburettor modifications to add an LPG mixer. LPG produces fewer toxic emissions and is a popular fuel for fork-lift trucks that have to operate inside buildings. Biofuels. Ethanol, other alcohol fuels (biobutanol) and biogasoline have widespread use an automotive fuel. Most alcohols have less energy per liter than gasoline and are usually blended with gasoline. Alcohols are used for a variety of reasons: to increase octane, to improve emissions, and as an alternative to petroleum based fuel, since they can be made from agricultural crops. Brazil's ethanol program provides about 20% of the nation's automotive fuel needs, as a result of the mandatory use of E25 blend of gasoline throughout the country, 3 million cars that operate on pure ethanol, and 6 million dual or flexible-fuel vehicles sold since 2003. that run on any mix of ethanol and gasoline. The commercial success of "flex" vehicles, as they are popularly known, have allowed sugarcane based ethanol fuel to achieve a 50% market share of the gasoline market by April 2008. Electric. The first electric cars were built around 1832, well before internal combustion powered cars appeared. For a period of time electrics were considered superior due to the silent nature of electric motors compared to the very loud noise of the gasoline engine. This advantage was removed with Hiram Percy Maxim's invention of the muffler in 1897. Thereafter internal combustion powered cars had two critical advantages: 1) long range and 2) high specific energy (far lower weight of petrol fuel versus weight of batteries). The building of battery electric vehicles that could rival internal combustion models had to wait for the introduction of modern semiconductor controls and improved batteries. Because they can deliver a high torque at low revolutions electric cars do not require such a complex drive train and transmission as internal combustion powered cars. Some post-2000 electric car designs such as the Venturi Fétish are able to accelerate from 0-60 mph (96 km h) in 4.0 seconds with a top speed around 130 mph (210 km h). Others have a range of 250 miles (400 km) on the United States Environmental Protection Agency‎ (EPA) highway cycle requiring 31 2 hours to completely charge. Equivalent fuel efficiency to internal combustion is not well defined but some press reports give it at around. Steam. Steam power, usually using an oil- or gas-heated boiler, was also in use until the 1930s but had the major disadvantage of being unable to power the car until boiler pressure was available (although the newer models could achieve this in well under a minute). It has the advantage of being able to produce very low emissions as the combustion process can be carefully controlled. Its disadvantages include poor heat efficiency and extensive requirements for electric auxiliaries.. Air. A compressed air car is an alternative fuel car that uses a motor powered by compressed air. The car can be powered solely by air, or by air combined (as in a hybrid electric vehicle) with gasoline diesel ethanol or electric plant and regenerative braking. Instead of mixing fuel with air and burning it to drive pistons with hot expanding gases; "compressed air cars" use the expansion of compressed air to drive their pistons. Several prototypes are available already and scheduled for worldwide sale by the end of 2008, though this has not happened as of January 2009. Companies releasing this type of car include Tata Motors and Motor Development International (MDI). Gas turbine. In the 1950s there was a brief interest in using gas turbine engines and several makers including Rover and Chrysler produced prototypes. In spite of the power units being very compact, high fuel consumption, severe delay in throttle response, and lack of engine braking meant no cars reached production. Rotary (Wankel) engines. Rotary Wankel engines were introduced into road cars by NSU with the Ro 80 and later were seen in the Citroën GS Birotor and several Mazda models. In spite of their impressive smoothness, poor reliability and fuel economy led to them largely disappearing. Mazda, beginning with the R100 then RX-2, has continued research on these engines, overcoming most of the earlier problems with the RX-7 and RX-8. Rocket and jet cars. A rocket car holds the record in drag racing. However, the fastest of those cars are used to set the Land Speed Record, and are propelled by propulsive jets emitted from rocket, turbojet, or more recently and most successfully turbofan engines. The ThrustSSC car using two Rolls-Royce Spey turbofans with reheat was able to exceed the speed of sound at ground level in 1997. Safety. There are three main statistics to which automobile safety can be compared: While road traffic injuries represent the leading cause in worldwide injury-related deaths, their popularity undermines this statistic. Mary Ward became one of the first documented automobile fatalities in 1869 in Parsonstown, Ireland and Henry Bliss one of the United States' first pedestrian automobile casualties in 1899 in New York. There are now standard tests for safety in new automobiles, like the EuroNCAP and the US NCAP tests, as well as insurance-backed IIHS tests. Costs and benefits. The costs of automobile usage, which may include the cost of: acquiring the vehicle, repairs, maintenance, fuel, depreciation, parking fees, tire replacement, taxes and insurance, are weighed against the cost of the alternatives, and the value of the benefits, perceived and real, of vehicle usage. The benefits may include on-demand transportation, mobility, independence and convenience. Similarly the costs to society of encompassing automobile use, which may include those of: maintaining roads, land use, pollution, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that automobile use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of automobile production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the opportunities. The ability for humans to move flexibly from place to place has far reaching implications for the nature of societies. Environmental impact. Transportation is a major contributor to air pollution in most industrialised nations. According to the American Surface Transportation Policy Project nearly half of all Americans are breathing unhealthy air. Their study showed air quality in dozens of metropolitan areas has got worse over the last decade. In the United States the average passenger car emits 11,450 lbs (5 tonnes) of carbon dioxide, along with smaller amounts of carbon monoxide, hydrocarbons, and nitrogen. Residents of low-density, residential-only sprawling communities are also more likely to die in car collisions, which kill 1.2 million people worldwide each year, and injure about forty times this number. Sprawl is more broadly a factor in inactivity and obesity, which in turn can lead to increased risk of a variety of diseases. Other species are often negatively impacted by automobiles via habitat destruction and pollution. Over the lifetime of the average automobile the "loss of habitat potential" may be over 50,000 square meters (538,195 square feet) based on Primary production correlations. Fuel taxes may act as an incentive for the production of more efficient, hence less polluting, car designs (e.g. hybrid vehicles) and the development of alternative fuels. High fuel taxes may provide a strong incentive for consumers to purchase lighter, smaller, more fuel-efficient cars, or to not drive. On average, today's automobiles are about 75 percent recyclable, and using recycled steel helps reduce energy use and pollution. In the United States Congress, federally mandated fuel efficiency standards have been debated regularly, passenger car standards have not risen above the standard set in 1985. Light truck standards have changed more frequently, and were set at in 2007. Alternative fuel vehicles are another option that is less polluting than conventional petroleum powered vehicles. Future car technologies. Automobile propulsion technology under development include electric and plug-in hybrids, battery electric vehicles, hydrogen cars, biofuels, and various alternative fuels. Research into future alternative forms of power include the development of fuel cells, Homogeneous Charge Compression Ignition (HCCI), stirling engines, and even using the stored energy of compressed air or liquid nitrogen. New materials which may replace steel car bodies include duraluminum, fiberglass, carbon fiber, and carbon nanotubes. Telematics technology is allowing more and more people to share cars, on a pay-as-you-go basis, through such schemes as City Car Club in the UK, Mobility in mainland Europe, and Zipcar in the US. Alternatives to the automobile. Established alternatives for some aspects of automobile use include public transit (buses, trolleybuses, trains, subways, monorails, tramways), cycling, walking, rollerblading, skateboarding, horseback riding and using a velomobile. Car-share arrangements and carpooling are also increasingly popular–the U.S. market leader in car-sharing has experienced double-digit growth in revenue and membership growth between 2006 and 2007, offering a service that enables urban residents to "share" a vehicle rather than own a car in already congested neighborhoods. Bike-share systems have been tried in some European cities, including Copenhagen and Amsterdam. Similar programs have been experimented with in a number of U.S. Cities. Additional individual modes of transport, such as personal rapid transit could serve as an alternative to automobiles if they prove to be socially accepted.