arm |
foot |
top 10 words in brain distribution (in article): muscle bone human animal structure nerve contain term branch join |
top 10 words in brain distribution (in article): form human bone wear animal horse structure function organ size |
top 10 words in brain distribution (not in article): cell wear horse body form brain tissue organism type woman |
top 10 words in brain distribution (not in article): cell body muscle iron blade head brain tissue organism type |
times more probable under arm 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under foot (words not in the model) | |
In anatomy, an arm'" is one of the upper limbs of an animal. The term "arm" can also be used for analogous structures, such as one of the paired upper limbs of a four-legged animal, or the arms of cephalopods. In the lexicon of human anatomy, the term "arm" refers specifically to the segment between the shoulder and the elbow. The segment between the elbow and wrist is the forearm. However, in colloquial speech the term "arm" often refers to the entire upper limb from shoulder to wrist. In primates the arms are richly adapted for both climbing and for more skilled, manipulative tasks. The ball and socket shoulder joint allows for movement of the arms in a wide circular plane, while the presence of two forearm bones which can rotate around each other allows for additional range of motion at this level. Anatomy of the human arm. The human arm contains 30 bones, joints, muscles, nerves, and blood vessels. Many of these muscles are used for everyday tasks. Bony structure and joints. The humerus is the (upper) arm bone. It joins with the scapula above at the shoulder joint (or glenohumeral joint) and with the ulna and radius below at the elbow joint. Elbow joint. The elbow joint is the hinge joint between the distal end of the humerus and the proximal ends of the radius and ulna. The humerus cannot be broken easily. Its strength allows it to handle loading up to 300lbs. Osteofascial compartments. The arm is divided by a fascial layer (known as lateral and medial intermuscular septa) separating the muscles into two "osteofascial compartments": The fascia merges with the periosteum (outer bone layer) of the humerus. The compartments contain muscles which are innervated by the same nerve and perform the same action. Two other muscles are considered to be partially in the arm: Cubital fossa. The cubital fossa is clinically important for venepuncture and for blood pressure measurement. It is an imaginary triangle with borders being: The structures which pass through the cubital fossa are vital. The order from which they pass into the forearm are as follows, from medial to lateral: Nerve supply. The musculocutaneous nerve, from C5, C6, C7, is the main supplier of muscles of the anterior compartment. It originates from the lateral cord of the brachial plexus of nerves. It pierces the coracobrachialis muscle and gives off branches to the muscle, as well as to brachialis and biceps brachii. It terminates as the anterior cutaneous nerve of the forearm. The radial nerve, which is from the fifth cervical spinal nerve to the first thoracic spinal nerve, originates as the continuation of the posterior cord of the brachial plexus. This nerve enters the lower triangular space (an imaginary space bounded by, amongst others, the shaft of the humerus and the triceps brachii) of the arm and lies deep to the triceps brachii. Here it travels with a deep artery of the arm (the profunda brachii), which sits in the radial groove of the humerus. This fact is very important clinically as a fracture of the bone at the shaft of the bone here can cause lesions or even transections in the nerve. Other nerves passing through give no supply to the arm. These include: Arteries. The main artery in the arm is the brachial artery. This artery is a continuation of the axillary artery. The point at which the | The foot is an anatomical structure found in many animals. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws or nails. General forms of the foot. An example of unguligrade feet, the hooves of a horse The feet of land vertebrates are characterized as either plantigrade, digitigrade, or unguligrade. In plantigrade animals, such as humans, frogs or bears, the bottom of the entire foot supports the weight of the animal. In digitigrade animals, such as cats, wolves or birds, the toes bear the animal's weight, while the upper regions of the foot, the ankle and wrist, remain elevated. Finally, in unguligrade animals, such as cows or horses, even the toes are elevated, the animal standing only atop its nails, which have evolved to bear weight and are called hooves. Anatomy. The human foot is of the plantigrade form. The major bones in the human foot are: The foot also contains sesamoid bones in distal portion of the first metatarsal bone. Anthropometry. An anthropometric study of 1197 North American adult Caucasian males (mean age 35.5 years) found that mean foot length was 26.3 cm with a standard deviation of 1.2 cm. In culture. Worldwide, different cultures treat and perceive feet very differently: Footwear customs. Customs about footwear while indoors vary significantly from place to place and usually depend on climate, weather, and other factors: Customary measurement. One way to measure short distances on the ground is by placing one foot directly in front of the other; this led to the adoption of the foot as a unit of length, even though not all human feet correspond to this measure. Myths. It is a myth that the Imperial "foot" (304.8 mm) is about the length of the average European male foot. The average today is less than 280 mm and 90% of the population is within 20 mm of that. Although many men today have feet that are 11.5 inches long (size 12-13): most are less than size 11. In the past, the average length would have been even less. The overall length of most shoes however, is above one "foot". Tradition has it that the Imperial foot was based upon the size of Hercules' foot or the size of the king of England. Medical aspects. Due to their position and function, feet are exposed to a variety of potential infections and injuries, including athlete's foot, bunions, ingrown toenails, Morton's neuroma, plantar fasciitis, plantar warts and stress fractures. In addition, there are several genetic conditions that can affect the shape and function of the feet, including a club foot or flat feet. This leaves humans more vulnerable to medical problems that are caused by poor leg and foot alignments. Also, the wearing of shoes, sneakers and boots can impede proper alignment and movement within the ankle and foot. For example, high heels are known to throw off the natural weight balance (this can also affect the lower back). For the sake of posture, flat soles and heels are advised. A doctor who specializes in the treatment of the feet practices podiatry and is called a podiatrist. A pedorthist specializes in the use and modification of footwear to treat problems related to the lower limbs. |