airplane |
bicycle |
top 10 words in brain distribution (in article): city build state Unite water time world vehicle road population |
top 10 words in brain distribution (in article): fiber city build town state century Unite produce country time |
top 10 words in brain distribution (not in article): animal house store street town species home cat breed wolf |
top 10 words in brain distribution (not in article): sheep house wool store cotton street fabric weave hamlet home |
times more probable under airplane 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under bicycle (words not in the model) | |
A fixed-wing aircraft'" is an aircraft capable of heavier-than-air flight whose lift is generated not by wing motion relative to the aircraft, but by forward motion through the air. The term is used to distinguish from rotary-wing aircraft or ornithopters, where the movement of the wing surfaces relative to the aircraft generates lift. In the United States and Canada, the term "'airplane'" is used; the term "'aeroplane'" is more common in the rest of the English-speaking countries, including Great Britain, the rest of the Commonwealth countries (excluding Canada), and the Republic of Ireland. These terms refer to any fixed wing aircraft powered by propellers or jet engines. The word derives from the Greek "αέρας" (aéras-) ("air") and "-plane". The spelling "aeroplane" is the older of the two, dating back to the mid-late 19th century. Some fixed-wing aircraft may be remotely or robot controlled. Overview. Fixed-wing aircraft range from small training and recreational aircraft to wide-body aircraft and military cargo aircraft. The word also embraces aircraft with folding or removable wings that are intended to fold when on the ground. This is usually to ease storage or facilitate transport on, for example, a vehicle trailer or the powered lift connecting the hangar deck of an aircraft carrier to its flight deck. It also embraces aircraft with "variable-sweep wings", such as the General Dynamics F-111, Grumman F-14 Tomcat and the Panavia Tornado, which can vary the sweep angle of their wings during flight. There are also rare examples of aircraft which can vary the angle of incidence of their wings in flight, such the F-8 Crusader, which are also considered to be "fixed-wing". The two necessities for fixed-wing aircraft are air flow over the wings for lifting of the aircraft, and an area for landing. The majority of aircraft, however, also need an airport with the infrastructure to receive maintenance, restocking, refueling and for the loading and unloading of crew, cargo and passengers. Some aircraft are capable of take off and landing on ice, aircraft carriers, snow, or calm water. The aircraft is the second fastest method of transport, after the rocket. Commercial jet aircraft can reach up to 1000 km h. Certified single-engined, piston-driven aircraft are capable of reaching up to 435 km h, while Experimental (modified WW II fighters) piston singles reach over 815 km h at the Reno Air Races. Supersonic aircraft (military, research and a few private aircraft) can reach speeds faster than sound. The speed record for a plane powered by an air-breathing engine is held by the experimental NASA X-43, which reached nearly ten times the speed of sound. The biggest aircraft built is the Antonov An-225, while the fastest still in production is the Mikoyan MiG-31. The biggest supersonic jet ever produced is the Tupolev Tu-160. Structure. The structure of a fixed-wing aircraft consists of the following major parts: Some varieties of aircraft, such as flying wing aircraft, may lack a discernible fuselage structure and horizontal or vertical stabilizers. Controls. A number of controls allow pilots to direct aircraft in the air. The controls found in a typical fixed-wing aircraft are as follows: The controls may allow full or partial automation of flight, such as an autopilot, a wing leveler, or a flight management system. Pilots adjust these controls to select a specific attitude or mode of flight, and then the associated automation maintains that attitude or mode until the pilot disables the automation or changes the settings. In general, the larger and or more complex the aircraft, the greater the amount of automation available to pilots. Control duplication. On an aircraft with a pilot and copilot, or instructor and trainee, the aircraft is made capable of control without the crew changing seats. The most common arrangement is two complete sets of controls, one for each of two pilots sitting side by side, but in some aircraft (military fighter aircraft, some taildraggers and aerobatic aircraft) the dual sets of controls are arranged one in front of the other. A few of the less important controls may not be present in both positions, and one position is usually intended for the pilot in command ("e.g.," the left "captain's seat" in jet airliners). Some small aircraft use controls that can be moved from one position to another, such as a single yoke that can be swung into position in front of either the left-seat pilot or the right-seat pilot (i.e. Beechcraft Bonanza). Aircraft that require more than one pilot usually have controls intended to suit each pilot position, but still with sufficient duplication so that all pilots can fly the aircraft alone in an emergency. For example, in jet airliners, the controls on the left (captain's) side include both the basic controls and those normally manipulated by the pilot in command, such as the tiller, whereas those of the right (first officer's) side include the basic controls again and those normally manipulated by the copilot, such as flap levers. The unduplicated controls that are required for flight are positioned so that they can be reached by either pilot, but they are often designed to be more convenient to the pilot who manipulates them under normal condition. Aircraft instruments. "Instruments" provide information to the pilot. "Flight instruments" provide information about the aircraft's speed, direction, altitude, and orientation. "Powerplant instruments" provide information about the the status of the aircraft's engines and APU. "Systems instruments" provide information about the aircraft's other systems, such as fuel delivery, electrical, and pressurization. "Navigation and communication instruments" include all the aircraft's radios. Instruments may operate mechanically or electrically, requiring 12VDC, 24VDC, or 400 Hz power systems. An aircraft that uses computerized CRT or LCD displays almost exclusively is said to have a "glass cockpit." Propulsion. Fixed-wing aircraft can be sub-divided according to the means of propulsion they use. Unpowered aircraft. Aircraft that primarily intended for unpowered flight include gliders (sometimes called sailplanes), hang gliders and paragliders. These are mainly used for recreation. After launch, the energy for sustained gliding flight is obtained through the skilful exploitation of rising air in the atmosphere. Gliders that are used for the sport of gliding have high aerodynamic efficiency. The highest lift-to-drag ratio is 70:1, though 50:1 is more common. Glider flights of thousands of kilometers at average speeds over 200 km h have been achieved. The glider is most commonly launched by a tow-plane or by a winch. Some gliders, called motor gliders, are equipped with engines (often retractable) and some are capable of self-launching. The most numerous unpowered aircraft are hang gliders and paragliders. These are foot-launched and are generally slower, less massive, and less expensive than sailplanes. Hang gliders most often have flexible wings which are given shape by a frame, though some have rigid wings. This is in contrast to paragliders which have no frames in their wings. Military gliders have been used in war to deliver assault troops, and specialized gliders have been used in atmospheric and aerodynamic research. Experimental aircraft and winged spacecraft have also made unpowered landings. Propeller aircraft. Smaller and older propeller aircraft make use of reciprocating internal combustion engines that turns a propeller to create thrust. They are quieter than jet aircraft, but they fly at lower speeds, and have lower load capacity compared to similar sized jet powered aircraft. However, they are significantly cheaper and much more economical than jets, and are generally the best option for people who need to transport a few passengers and or small amounts of cargo. They are also the aircraft of choice for pilots who wish to own an aircraft. Turboprop aircraft are a halfway point between propeller and jet: they use a turbine engine similar to a jet to turn propellers. These aircraft are popular with commuter and regional airlines, as they tend to be more economical on shorter journeys. Jet aircraft. Jet aircraft make use of turbines for the creation of thrust. These engines are much more powerful than a reciprocating engine. As a consequence, they have greater weight capacity and fly faster than propeller driven aircraft. One drawback, however, is that they are noisy; this makes jet aircraft a source of noise pollution. However, turbofan jet engines are quieter, and they have seen widespread usage partly for that reason. The jet aircraft was developed in Germany in 1931. The first jet was the Heinkel He 178, which was tested at Germany's Marienehe Airfield in 1939. In 1943 the Messerschmitt Me 262, the first jet fighter aircraft, went into service in the German Luftwaffe. In the early 1950s, only a few years after the first jet was produced in large numbers, the De Havilland Comet became the world's first jet airliner. However, the early Comets were beset by structural problems discovered after numerous pressurization and depressurization cycles, leading to extensive redesigns. Most wide-body aircraft can carry hundreds of passengers and several tons of cargo, and are able to travel for distances up to 17,000 km. Aircraft in this category are the Boeing 747, Boeing 767, Boeing 777, the upcoming Boeing 787 and Airbus A380, Airbus A300 A310, Airbus A330, Airbus A340, Airbus A380, Lockheed L-1011 TriStar, McDonnell Douglas DC-10, McDonnell Douglas MD-11, Ilyushin Il-86, and Ilyushin Il-96. Jet aircraft possess high cruising speeds (700 to 900 km h, or 400 to 550 mph) and high speeds for take-off and landing (150 to 250 km h). Due to the speed needed for takeoff and landing, jet aircraft make use of flaps and leading edge devices for the control of lift and speed, as well as thrust reversers to direct the airflow forward, slowing down the aircraft upon landing. Supersonic jet aircraft. Supersonic aircraft, such as military fighters and bombers, Concorde, and others, make use of special turbines (often utilizing afterburners), that generate the huge amounts of power for flight faster than the speed of the sound. Flight at supersonic speed creates more noise than flight at subsonic speeds, due to the phenomenon of sonic booms. This limits supersonic flights to areas of low population density or open ocean. When approaching an area of heavier population density, supersonic aircraft are obliged to fly at subsonic speed. Due to the high costs, limited areas of use and low demand there are no longer any supersonic aircraft in use by any major airline. The last Concorde flight was on 26 November 2003. Unmanned Aircraft. An aircraft is said to be 'unmanned' when there is no person in the cockpit of the plane. The aircraft is controlled only by remote controls or other electronic devices. Rocket-powered aircraft. Experimental rocket powered aircraft were developed by the Germans as early as World War II (see Me 163 Komet), and about 29 were manufactured and deployed. The first fixed wing aircraft to break the sound barrier in level flight was a rocket plane- the Bell X-1. The later North American X-15 was another important rocket plane that broke many speed and altitude records and laid much of the groundwork for later aircraft and spacecraft design. Rocket aircraft are not in common usage today, although rocket-assisted takeoffs are used for some military aircraft. SpaceShipOne is the most famous current rocket aircraft, being the testbed for developing a commercial sub-orbital passenger service; another rocket plane is the XCOR EZ-Rocket; and there is of course the Space Shuttle. Ramjet aircraft. A ramjet is a form of jet engine that contains no major moving parts and can be particularly useful in applications requiring a small and simple engine for high speed use, such as missiles. The D-21 Tagboard was an unmanned Mach 3+ reconnaissance drone that was put into production in 1969 for spying, but due to the development of better spy satellites, it was cancelled in 1971. The SR-71's Pratt & Whitney J58 engines ran 80% as ramjets at high speeds (Mach 3.2). The SR-71 was dropped at the end of the Cold War, then brought back during the 1990s. They were used also in the Gulf War. The last SR-71 flight was in October 2001. Scramjet aircraft. Scramjet aircraft are in the experimental stage. The Boeing X-43 is an experimental scramjet with a world speed record for a jet-powered aircraft Mach 9.7, nearly 12,000 km h (≈ 7,000 mph) at an altitude of about 36,000 meters (≈ 110,000 ft). The X-43A set the flight speed record on 16 November 2004. History. The dream of flight goes back to the days of pre-history. Many stories from antiquity involve flight, such as the Greek legend of Icarus and Daedalus, and the Vimana in ancient Indian epics. Around 400 BC, Archytas, the Ancient Greek philosopher, mathematician, astronomer, statesman, and strategist, was reputed to have designed and built the first artificial, self-propelled flying device, a bird-shaped model propelled by a jet of what was probably steam, said to have actually flown some 200 meters. This machine, which its inventor called "The Pigeon" (Greek: "Περιστέρα" "Peristera"), may have been suspended on a wire or pivot for its flight. Amongst the first recorded attempts at aviation were the attempts made by Yuan Huangtou in the 6th century and by Abbas Ibn Firnas in the 9th century. Leonardo da Vinci researched the wing design of birds and designed a man-powered aircraft in his "Codex on the Flight of Birds" (1502). In the 1630s, Lagari Hasan Çelebi flew in a rocket artificially powered by gunpowder. In the 18th century, Francois Pilatre de Rozier and Francois d'Arlandes flew in an aircraft lighter than air, a balloon. The biggest challenge became to create other craft, capable of controlled flight. Sir George Cayley, the founder of the science of aerodynamics, was building and flying models of fixed-wing aircraft as early as 1803, and he built a successful passenger-carrying glider in 1853. In 1856, Frenchman Jean-Marie Le Bris made the first powered flight, by having his glider "L'Albatros artificiel" pulled by a horse on a beach. On 28 August 1883, the American John J. Montgomery made a controlled flight in a glider. Other aviators who had made similar flights at that time were Otto Lilienthal, Percy Pilcher and Octave Chanute. The first self-powered aircraft was created by an Englishman by the name of John Stringfellow of Chard in Somerset, who created a self-powered model aircraft that had its first successful flight in 1848. Clément Ader constructed and designed a self-powered aircraft. On October 9, 1890, Ader attempted to fly the Éole, which succeeded in taking off and flying uncontrolled a distance of approximately 50 meters before witnesses. In August 1892 the Avion II flew for a distance of 200 meters, and on October 14, 1897, Avion III flew a distance of more than 300 meters. Richard Pearse made a poorly documented uncontrolled flight on March 31, 1903 in Waitohi, New Zealand, and on August 28, 1903 in Hanover, the German Karl Jatho made his first flight. Alberto Santos-Dumont, a Brazilian living in France, built the first practical dirigible balloons at the end of the nineteenth century. In 1906 he flew the first fixed wing aircraft, the "14-bis", which was of his and Gabriel Voisin's design. A later design of his, the "Demoiselle", introduced ailerons and brought all around pilot control during a flight. The Wright Brothers made their first successful test flights on December 17, 1903. This flight is recognized by the Fédération Aéronautique Internationale (FAI), the standard setting and record-keeping body for aeronautics and astronautics, as "the first sustained and controlled heavier-than-air powered flight". By 1905, the Wright Flyer III was capable of fully controllable, stable flight for substantial periods. World War I served as a testbed for the use of the aircraft as a weapon. Initially seen by the generals as a "toy", aircraft demonstrated their potential as mobile observation platforms, then proved themselves to be machines of war capable of causing casualties to the enemy. "Fighter aces" appeared, described as "knights of the air"; the greatest (by number of air victories) was the German Manfred von Richthofen, the "Red Baron". On the side of the allies, the ace with the highest number of downed aircraft was René Fonck, of France. Following the war, aircraft technology continued to develop. Alcock and Brown crossed the Atlantic non-stop for the first time in 1919, a feat first performed solo by Charles Lindbergh in 1927. The first commercial flights took place between the United States and Canada in 1919. The turbine or the jet engine was in development in the 1930s; military jet aircraft began operating in the 1940s. Aircraft played a primary role in the Second World War, having a presence in all the major battles of the war, Pearl Harbor, the battles of the Pacific, the Battle of Britain. They were an essential component of the military strategies of the period, such as the German Blitzkrieg or the American and Japanese aircraft carrier campaigns of the Pacific. In October 1947, Chuck Yeager was the first person to exceed the speed of sound, flying the Bell X-1. Aircraft in a civil military role continued to feed and supply Berlin in 1948, when access to railroads and roads to the city, completely surrounded by Eastern Germany, were blocked, by order of the Soviet Union. The first commercial jet, the de Havilland Comet, was introduced in 1952. A few Boeing 707s, the first widely successful commercial jet, are still in service after nearly 50 years. The Boeing 727 was another widely used passenger aircraft, and the Boeing 747 was the world's biggest commercial aircraft between 1970 and 2005, when it was surpassed by the Airbus A380. Designing and constructing an aircraft. Small aircraft can be designed and constructed by amateurs as homebuilts, such as Chris Neil's Woody Helicopter. Other aviators with less knowledge make their aircraft using pre-manufactured kits, assembling the parts into a complete aircraft. Most aircraft are constructed by companies with the objective of producing them in quantity for customers. The design and planning process, including safety tests, can last up to four years for small turboprops, and up to 12 years for aircraft with the capacity of the A380. During this process, the objectives and design specifications of the aircraft are established. First the construction company uses drawings and equations, simulations, wind tunnel tests and experience to predict the behavior of the aircraft. Computers are used by companies to draw, plan and do initial simulations of the aircraft. Small models and mockups of all or certain parts of the aircraft are then tested in wind tunnels to verify the aerodynamics of the aircraft. When the design has passed through these processes, the company constructs a limited number of these aircraft for testing on the ground. Representatives from an aviation governing agency often make a first flight. The flight tests continue until the aircraft has fulfilled all the requirements. Then, the governing public agency of aviation of the country authorizes the company to begin production of the aircraft. In the United States, this agency is the Federal Aviation Administration (FAA), and in the European Union, Joint Aviation Authorities (JAA). In Canada, the public agency in charge and authorizing the mass production of aircraft is Transport Canada. In the case of the international sales of aircraft, a license from the public agency of aviation or transports of the country where the aircraft is also to be used is necessary. For example, aircraft from Airbus need to be certified by the FAA to be flown in the United States and vice versa, aircraft of Boeing need to be approved by the JAA to be flown in the European Union. Quieter aircraft are becoming more and more needed due to the increase in air traffic, particularly over urban areas, as noise pollution is a major concern. MIT and Cambridge University have been designing delta-wing aircraft that are 25 times more silent (63 dB) than current craft and can be used for military and commercial purposes. The project is called the Silent Aircraft Initiative, but production models will not be available until around 2030. Industrialized production. There are few companies that produce aircraft on a large scale. However, the production of an aircraft for one company is a process that actually involves dozens, or even hundreds, of other companies and plants, that produce the parts that go into the aircraft. For example, one company can be responsible for the production of the landing gear, while another one is responsible for the radar. The production of such parts is not limited to the same city or country; in the case of large aircraft manufacturing companies, such parts can come from all over the world. The parts are sent to the main plant of the aircraft company, where the production line is located. In the case of large aircraft, production lines dedicated to the assembly of certain parts of the aircraft can exist, especially the wings and the fuselage. When complete, an aircraft goes through a set of rigorous inspection, to search for imperfections and defects, and after being approved by the inspectors, the aircraft is tested by a pilot, in a flight test, in order to assure that the controls of the aircraft are working properly. With this final test, the aircraft is ready to receive the "final touchups" (internal configuration, painting, etc), and is then ready for the customer. Comparisons. There are three main statistics which may be used to compare the safety of various forms of travel: It is worth noting that the air industry's insurers base their calculations on the "number of deaths per journey" statistic while the industry itself generally uses the "number of deaths per kilometre" statistic in press releases. Causes. The majority of aircraft accidents are a result of human error on the part of the pilot(s) or controller(s). After human error, mechanical failure is the biggest cause of air accidents, which sometimes also can involve a human component; e.g., negligence of the airline in carrying out proper maintenance. Adverse weather is the third largest cause of accidents. Icing, downbursts, and low visibility are often major contributors to weather related crashes. Birds have been ranked as a major cause for large rotor bursts on commercial turboprop engines, spurring extra safety measures to keep birds away. Technological advances such as ice detectors also help pilots ensure the safety of their aircraft. | The bicycle'", "'bike'", or "'cycle'" is a pedal-driven, human-powered vehicle with two wheels attached to a frame, one behind the other. Bicycles were introduced in the 19th century and now number about one billion worldwide. They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for such uses as children's toys, adult fitness, military and police applications, courier services, and competitive sports. The basic shape and configuration of a typical bicycle has changed little since the first chain-driven model was developed around 1885. Many details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for particular types of cycling. The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In its early years, bicycle construction drew on pre-existing technologies; more recently, bicycle technology has, in turn, contributed both to old and new areas. History. Multiple innovators contributed to the history of the bicycle by developing precursor human-powered vehicles. The documented ancestors of today's modern bicycle were known as push bikes (still called push bikes outside of North America), draisines, or hobby horses. Being the first human means of transport to make use of the two-wheeler principle, the draisine (or "mistmashine", "running machine"), invented by the German Baron Karl von Drais, is regarded as the archetype of the bicycle. It was introduced by Drais to the public in Mannheim in summer 1817 and in Paris in 1818. Its rider sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his her feet while steering the front wheel. In the early 1860s, Frenchmen Pierre Michaux and Pierre Lallement took bicycle design in a new direction by adding a mechanical crank drive with pedals on an enlarged front wheel. Another French inventor by the name of Douglas Grasso had a failed prototype of Pierre Lallement's bicycle several years earlier. Several why-not-the-rear-wheel inventions followed, the best known being the rod-driven velocipede by Scotsman Thomas McCall in 1869. The French creation, made of iron and wood, developed into the "penny-farthing" (more formally an "ordinary bicycle", a retronym, since there were then no other kind). It featured a tubular steel frame on which were mounted wire spoked wheels with solid rubber tires. These bicycles were difficult to ride due to their very high seat and poor weight distribution. The "dwarf ordinary" addressed some of these faults by reducing the front wheel diameter and setting the seat further back. This necessitated the addition of gearing, effected in a variety of ways, to attain sufficient speed. Having to both pedal and steer via the front wheel remained a problem. J. K. Starley, J. H. Lawson, and Shergold solved this problem by introducing the chain drive (originated by Henry Lawson's unsuccessful "bicyclette"), connecting the frame-mounted pedals to the rear wheel. These models were known as "dwarf safeties", or "safety bicycles", for their lower seat height and better weight distribution. Starley's 1885 Rover is usually described as the first recognizably modern bicycle. Soon, the "seat tube" was added, creating the double-triangle "diamond frame" of the modern bike. Further innovations increased comfort and ushered in a second bicycle craze, the 1890s' "Golden Age of Bicycles". In 1888, Scotsman John Boyd Dunlop introduced the pneumatic tire, which soon became universal. Soon after, the rear freewheel was developed, enabling the rider to coast. This refinement led to the 1898 invention of coaster brakes. Derailleur gears and hand-operated cable-pull brakes were also developed during these years, but were only slowly adopted by casual riders. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing became widely popular. Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the widespread advertising, production, and use of these devices. Uses. Bicycles have been and are employed for many uses: Technical aspects. The bicycle has undergone continual adaptation and improvement since its inception. These innovations have continued with the advent of modern materials and computer-aided design, allowing for a proliferation of specialized bicycle types. Types. Bicycles can be categorized in different ways: e.g. by function, by number of riders, by general construction, by gearing or by means of propulsion. The more common types include utility bicycles, mountain bicycles, racing bicycles, touring bicycles, hybrid bicycles, cruiser bicycles, and BMX bicycles. Less common are tandems, lowriders, tall bikes, fixed gear (fixed-wheel), folding models and recumbents (one of which was used to set the IHPVA Hour record). Unicycles, tricycles and quadracycles are not strictly bicycles, as they have respectively one, three and four wheels, but are often referred to informally as "bikes". Dynamics. A bicycle stays upright while moving forward by being steered so as to keep its center of gravity over the wheels. This steering is usually provided by the rider, but under certain conditions may be provided by the bicycle itself. The combined center of mass of a bicycle and its rider must lean into a turn in order successfully navigate it. This lean is induced by a method known as countersteering, which can be performed by the rider turning the handlebars directly with the hands or indirectly by leaning the bicycle. Short-wheelbase or tall bicycles, when braking, can generate enough stopping force at the front wheel in order to flip longitudinally. The act of purposefully using this force to lift the rear wheel and balance on the front without tipping over is a trick known as a stoppie, endo or front wheelie. Performance. The bicycle is extraordinarily efficient in both biological and mechanical terms. The bicycle is the most efficient self-powered means of transportation in terms of energy a person must expend to travel a given distance. From a mechanical viewpoint, up to 99% of the energy delivered by the rider into the pedals is transmitted to the wheels, although the use of gearing mechanisms may reduce this by 10-15%. In terms of the ratio of cargo weight a bicycle can carry to total weight, it is also a most efficient means of cargo transportation. A human traveling on a bicycle at low to medium speeds of around 10-15 mph (15-25 km h), uses only the energy required to walk, is the most energy-efficient means of transport generally available. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. If the rider is sitting upright, the rider's body creates about 75% of the total drag of the bicycle rider combination. Drag can be reduced by seating the rider in a supine position or a prone position, thus creating a recumbent bicycle or human powered vehicle. Drag can also be reduced by covering the bicycle with an aerodynamic fairing. In addition, the carbon dioxide generated in the production and transportation of the food required by the bicyclist, per mile traveled, is less than 1 10th that generated by energy efficient cars. Construction and parts. In its early years, bicycle construction drew on pre-existing technologies. More recently, bicycle technology has in turn contributed ideas in both old and new areas. Frame. The great majority of today's bicycles have a frame with upright seating which looks much like the first chain-driven bike. Such upright bicycles almost always feature the "diamond frame", a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropouts. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear dropouts. Historically, women's bicycle frames had a top tube that connected in the middle of the seat tube instead of the top, resulting in a lower standover height at the expense of compromised structural integrity, since this places a strong bending load in the seat tube, and bicycle frame members are typically weak in bending. This design, referred to as a "step-through frame", allows the rider to mount and dismount in a dignified way while wearing a skirt or dress. While some women's bicycles continue to use this frame style, there is also a variation, the "mixte", which splits the top tube into two small top tubes that bypass the seat tube and connect to the rear dropouts. The ease of stepping through is also appreciated by those with limited flexibility or other joint problems. Because of its persistent image as a "women's" bicycle, step-through frames are not common for larger frames. Another style is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world's fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale. Historically, materials used in bicycles have followed a similar pattern as in aircraft, the goal being high strength and low weight. Since the late 1930s alloy steels have been used for frame and fork tubes in higher quality machines. Celluloid found application in mudguards, and aluminum alloys are increasingly used in components such as handlebars, seat post, and brake levers. In the 1980s aluminum alloy frames became popular, and their affordability now makes them common. More expensive carbon fiber and titanium frames are now also available, as well as advanced steel alloys and even bamboo. Drivetrain and gearing. Since cyclists' legs are most efficient over a narrow range of pedaling speeds (cadence), a variable gear ratio helps a cyclist to maintain an optimum pedalling speed while covering varied terrain. As a first approximation, utility bicycles often use a hub gear with a small number (3 to 5) of widely-spaced gears, road bicycles and racing bicycles use derailleur gears with a moderate number (10 to 22) of closely-spaced gears, while mountain bicycles, hybrid bicycles, and touring bicycles use dérailleur gears with a larger number (15 to 30) of moderately-spaced gears, often including an extremely low gear (granny gear) for climbing steep hills. Different gears and ranges of gears are appropriate for different people and styles of cycling. Multi-speed bicycles allow gear selection to suit the circumstances, e.g. it may be comfortable to use a high gear when cycling downhill, a medium gear when cycling on a flat road, and a low gear when cycling uphill. In a lower gear every turn of the pedals leads to fewer rotations of the rear wheel. This allows the energy required to move the same distance to be distributed over more pedal turns, reducing fatigue when riding uphill, with a heavy load, or against strong winds. A higher gear allows a cyclist to make fewer pedal cycles to maintain a given speed, but with more effort per turn of the pedals. The "drivetrain" begins with pedals which rotate the cranks, which are held in axis by the bottom bracket. Most bicycles use a chain to transmit power to the rear wheel. A relatively small number of bicycles use a shaft drive to transmit power. A very small number of bicycles (mainly single-speed bicycles intended for short-distance commuting) use a belt drive as an oil-free way of transmitting power. With a "chain drive" transmission, a "chainring" attached to a crank drives the chain, which in turn rotates the rear wheel via the rear sprocket(s) (cassette or freewheel). There are four gearing options: two-speed hub gear integrated with chain ring, up to 3 chain rings, up to 11 sprockets, hub gear built in to rear wheel (3-speed to 14-speed). The most common options are either a rear hub or multiple chain rings combined with multiple sprockets (other combinations of options are possible but less common). With a "shaft drive" transmission, a gear set at the bottom bracket turns the shaft, which then turns the rear wheel via a gear set connected to the wheel's hub. There is some small loss of efficiency due to the two gear sets needed. The only gearing option with a shaft drive is to use a hub gear. Steering and seating. The handlebars turn the fork and the front wheel via the stem, which rotates within the headset. Three styles of handlebar are common. "Upright handlebars", the norm in Europe and elsewhere until the 1970s, curve gently back toward the rider, offering a natural grip and comfortable upright position. "Drop handlebars" "drop" as they curve forward and down, offering the cyclist best braking power from a more aerodynamic "crouched" position, as well as more upright positions in which the hands grip the brake lever mounts, the forward curves, or the upper flat sections for increasingly upright postures. Mountain bikes generally feature a 'straight handlebar' or 'riser bar' with varying degrees of sweep backwards and centimeters rise upwards, as well as wider widths which can provide better handling due to increased leverage against the wheel. Saddles also vary with rider preference, from the cushioned ones favored by short-distance riders to narrower saddles which allow more room for leg swings. Comfort depends on riding position. With comfort bikes and hybrids the cyclist sits high over the seat, their weight directed down onto the saddle, such that a wider and more cushioned saddle is preferable. For racing bikes where the rider is bent over, weight is more evenly distributed between the handlebars and saddle, the hips are flexed, and a narrower and harder saddle is more efficient. Differing saddle designs exist for male and female cyclists, accommodating the genders' differing anatomies, although bikes typically are sold with saddles most appropriate for men. A recumbent bicycle has a reclined chair-like seat that some riders find more comfortable than a saddle, especially riders who suffer from certain types of seat, back, neck, shoulder, or wrist pain. Recumbent bicycles may have either under-seat or over-seat steering. Brakes. Modern bicycle "brakes" may be "rim brakes", in which friction pads are compressed against the wheel rims, "internal hub brakes", in which the friction pads are contained within the wheel hubs, "disc brakes", with a separate rotor for braking. Disc brakes are more common on off-road bicycles, tandems and recumbent bicycles than on road-specific bicycles. With hand-operated brakes, force is applied to brake levers mounted on the handlebars and transmitted via Bowden cables or hydraulic lines to the friction pads. A rear hub brake may be either hand-operated or pedal-actuated, as in the back pedal "coaster brakes" which were popular in North America until the 1960s, and are still common in children's bicycles. Track bicycles do not have dedicated brakes. Brakes are not required for riding on a track because all riders ride in the same direction around a track which does not necessitate sharp deceleration. Track riders are still able to slow down because all track bicycles are fixed-gear, meaning that there is no freewheel. Without a freewheel, coasting is impossible, so when the rear wheel is moving, the crank is moving. To slow down, the rider applies resistance to the pedals – this acts as a braking system which can be as effective as a friction-based rear wheel brake, but not as effective as a front wheel brake. Suspension. Bicycle suspension refers to the system or systems used to "suspend" the rider and all or part of the bicycle. This serves two purposes: Bicycle suspensions are used primarily on mountain bicycles, but are also common on hybrid bicycles, and can even be found on some road bicycles, as they can help deal with problematic vibration. Suspension is especially important on recumbent bicycles, since while an upright bicycle rider can stand on the pedals to achieve some of the benefits of suspension, a recumbent rider cannot. Wheels. The wheel axle fits into dropouts in the frame and forks. A pair of wheels may be called a wheelset, especially in the context of ready-built "off the shelf", performance-oriented wheels. Tires vary enormously. Skinny, road-racing tires may be completely smooth, or (slick). On the opposite extreme, off-road tires are much wider and thicker, and usually have a deep tread for gripping in muddy conditions. Accessories, repairs, and tools. Some components, which are often optional accessories on sports bicycles, are standard features on utility bicycles to enhance their usefulness and comfort. Mudguards, or fenders, protect the cyclist and moving parts from spray when riding through wet areas and chainguards protect clothes from oil on the chain while preventing clothing from being caught between the chain and crankset teeth. Kick stands keep a bicycle upright when parked. Front-mounted baskets for carrying goods are often used. Luggage carriers and panniers mounted above the rear tire can be used to carry equipment or cargo. Parents sometimes add rear-mounted child seats and or an auxiliary saddle fitted to the crossbar to transport children. "Toe-clips" and "toestraps" and clipless pedals help keep the foot locked in the proper position on the pedals, and enable the cyclist to pull as well as push the pedals—although not without their hazards, eg. may lock foot in when needed to prevent a fall. Technical accessories include cyclocomputers for measuring speed, distance, etc. Other accessories include lights, reflectors, security locks, mirror, water bottles and cages, and bell. Bicycle helmets may help reduce injury in the event of a collision or accident, and a certified helmet is legally required for some riders in some jurisdictions. Helmets are classified as an accessory or an item of clothing by others. Many cyclists carry "tool kits". These may include a tire patch kit (which, in turn, may contain any combination of a hand pump or CO2 Pump, tire levers, spare tubes, self-adhesive patches, or tube-patching material, an adhesive, a piece of sandpaper or a metal grater (to roughing the tube surface to be patched), and sometimes even a block of French chalk.), wrenches, hex keys, screwdrivers, and a chain tool. There are also cycling specific multi-tools that combine many of these implements into a single compact device. More specialized bicycle components may require more complex tools, including proprietary tools specific for a given manufacturer. Some bicycle parts, particularly hub-based gearing systems, are complex, and many cyclists prefer to leave maintenance and repairs to professional bicycle mechanics. In some areas it is possible to purchase road-side assistance from companies such as the Better World Club. Other cyclists maintain their own bicycles, perhaps as part of their enjoyment of the hobby of cycling or simply for economic reasons. The ability to repair and maintain your own bicycle is also celebrated within the DIY movement. Standards. A number of formal and industry standards exist for bicycle components to help make spare parts exchangeable and to maintain a minimum product safety. The International Organization for Standardization, ISO, has a special technical committee for cycles, TC149, that has the following scope: "Standardization in the field of cycles, their components and accessories with particular reference to terminology, testing methods and requirements for performance and safety, and interchangeability." CEN, European Committee for Standardisation, also has a specific Technical Committee, TC333, that defines European standards for cycles. Their mandate states that EN cycle standards shall harmonize with ISO standards. Some CEN cycle standards were developed before ISO published their standards, leading to strong European influences in this area. European cycle standards tend to describe minimum safety requirements, while ISO standards have historically harmonized parts geometry. Parts. For details on specific bicycle parts, see list of bicycle parts and. Social and historical aspects. The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In daily life. Around the turn of the 20th century, bicycles reduced crowding in inner-city tenements by allowing workers to commute from more spacious dwellings in the suburbs. They also reduced dependence on horses. Bicycles allowed people to travel for leisure into the country, since bicycles were three times as energy efficient as walking and three to four times as fast. Recently, several European cities have implemented successful schemes known as community bicycle programs or bike-sharing. These initiatives complement a city's public transport system and offer an alternative to motorized traffic to help reduce congestion and pollution. Users take a bicycle at a parking station, use it for a limited amount of time, and then return it to the same or different station. Examples include Bicing in Barcelona, Vélo'v in Lyon and Vélib' in Paris. In cities where the bicycle is not an integral part of the planned transportation system, commuters often use bicycles as elements of a mixed-mode commute, where the bike is used to travel to and from train stations or other forms of rapid transit. Folding bicycles are useful in these scenarios, as they are less cumbersome when carried aboard. Los Angeles removed a small amount of seating on some trains to make more room for bicycles and wheel chairs. Bicycles offer an important mode of transport in many developing countries. Until recently, bicycles have been a staple of everyday life throughout Asian countries. They are the most frequently used method of transport for commuting to work, school, shopping, and life in general. As a result, bicycles there are almost always equipped with baskets. Female emancipation. The diamond-frame safety bicycle gave women unprecedented mobility, contributing to their emancipation in Western nations. As bicycles became safer and cheaper, more women had access to the personal freedom they embodied, and so the bicycle came to symbolize the New Woman of the late 19th century, especially in Britain and the United States. The bicycle was recognized by 19th-century feminists and suffragists as a "freedom machine" for women. American Susan B. Anthony said in a "New York World" interview on February 2 1896: "Let me tell you what I think of bicycling. I think it has done more to emancipate women than anything else in the world. It gives women a feeling of freedom and self-reliance. I stand and rejoice every time I see a woman ride by on a wheel...the picture of free, untrammeled womanhood." In 1895 Frances Willard, the tightly-laced president of the Women’s Christian Temperance Union, wrote a book called "How I Learned to Ride the Bicycle", in which she praised the bicycle she learned to ride late in life, and which she named "Gladys", for its "gladdening effect" on her health and political optimism. Willard used a cycling metaphor to urge other suffragists to action, proclaiming, "I would not waste my life in friction when it could be turned into momentum." Male anger at the freedom symbolized by the New (bicycling) Woman was demonstrated when the male undergraduates of Cambridge University showed their opposition to the admission of women as full members of the university by hanging a woman bicyclist in effigy in the main town square. This was as late as 1897. The bicycle craze in the 1890s also led to a movement for so-called rational dress, which helped liberate women from corsets and ankle-length skirts and other restrictive garments, substituting the then-shocking bloomers. Economic implications. Bicycle manufacturing proved to be a training ground for other industries and led to the development of advanced metalworking techniques, both for the frames themselves and for special components such as ball bearings, washers, and sprockets. These techniques later enabled skilled metalworkers and mechanics to develop the components used in early automobiles and aircraft. They also served to teach the industrial models later adopted, including mechanization and mass production (later copied and adopted by Ford and General Motors), vertical integration (also later copied and adopted by Ford), aggressive advertising (as much as 10% of all advertising in U.S. periodicals in 1898 was by bicycle makers), lobbying for better roads (which had the side benefit of acting as advertising, and of improving sales by providing more places to ride), all first practised by Pope. In addition, bicycle makers adopted the annual model change (later derided as planned obsolescence, and usually credited to General Motors), which proved very successful. Furthermore, bicycles were an early example of conspicuous consumption, being adopted by the fashionable elites. In addition, by serving as a platform for accessories, which could ultimately cost more than the bicycle itself, it paved the way for the likes of the Barbie doll. Moreover, they helped create, or enhance, new kinds of businesses, such as bicycle messengers, travelling seamstresses, riding academies, and racing rinks (Their board tracks were later adapted to early motorcycle and automobile racing.) Also, there were a variety of new inventions, such as spoke tighteners, and specialized lights, socks and shoes, and even cameras (such as the Eastman Company's "Poco"). Probably the best known and most widely used of these inventions, adopted well beyond cycling, is Charles Bennett's Bike Web, which came to be called the "jock strap". They also presaged a move away from public transit that would explode with the introduction of the automobile. This liberation would be repeated again with the appearance of the snowmobile. J. K. Starley's company became the Rover Cycle Company Ltd. in the late 1890s, and then simply the Rover Company when it started making cars. The Morris Motor Company (in Oxford) and Škoda also began in the bicycle business, as did the Wright brothers. Alistair Craig, whose company eventually emerged to become the engine manufacturers Ailsa Craig, also started from manufacturing bicycles, in Glasgow in March 1885. In general, U.S. and European cycle manufacturers used to assemble cycles from their own frames and components made by other companies, although very large companies (such as Raleigh) used to make almost every part of a bicycle (including bottom brackets, axles, etc.) In recent years, those bicycle makers have greatly changed their methods of production. Now, almost none of them produce their own frames. Many newer or smaller companies only design and market their products; the actual production is done by Asian companies. For example, some 60% of the world's bicycles are now being made in China. Despite this shift in production, as nations such as China and India become more wealthy, their own use of bicycles has declined due to the increasing affordability of cars and motorcycles. One of the major reasons for the proliferation of Chinese-made bicycles in foreign markets is the lower cost of labor in China. One of the profound economic implications of bicycle use is that it liberates the user from oil consumption (Ballantine, 1972). H.G. Wells said: “Every time I see an adult on a bicycle, I no longer despair for the future of the human race.” (Quotegarden.com). The bicycle is a inexpensive, fast, healthy and environmentally friendly mode of transport (Illich, 1974) Legal requirements. Early in its development, like in the case of automobiles, there were restrictions on the operation of bicycles. Along with advertising, and to gain free publicity, Albert A. Pope litigated on behalf of cyclists The 1968 Vienna Convention on Road Traffic of the United Nations considers a bicycle to be a vehicle, and a person controlling a bicycle (whether actually riding or not) is considered an operator. The traffic codes of many countries reflect these definitions and demand that a bicycle satisfy certain legal requirements, sometimes even including licensing, before it can be used on public roads. In many jurisdictions, it is an offense to use a bicycle that is not in roadworthy condition. In most jurisdictions, bicycles must have functioning front and rear lights when ridden after dark. As some generator or dynamo-driven lamps only operate while moving, rear reflectors are frequently also mandatory. Since a moving bicycle makes little noise, some countries insist that bicycles have a warning bell for use when approaching pedestrians, equestrians, and other cyclists. See also. "'Special uses and related vehicle types'" References. Other authors: Eddie Borysewicz, Greg LeMond, Davis Phinney, Connie Carpenter. |