ratio of word probabilities predicted from brain for watch and airplane

close this window

watch

airplane

top 10 words in brain distribution (in article):
power signal train radio electric frequency electrical current sound water
top 10 words in brain distribution (in article):
vehicle gear aircraft power design speed passenger drive seat air
top 10 words in brain distribution (not in article):
station line locomotive steam railway wire tower rail air track
top 10 words in brain distribution (not in article):
wheel car truck transmission pole type elevator belt driver tooth
times more probable under watch 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under airplane
(words not in the model)
A watch'" is a timepiece that is made to be worn on a person. The term now usually refers to a "wristwatch", which is worn on the wrist with a strap or bracelet. In addition to the time, modern watches often display the day, date, month and year, and electronic watches may have many other functions. Most inexpensive and medium-priced watches used mainly for timekeeping are electronic watches with quartz movements. Expensive, collectible watches valued more for their workmanship and aesthetic appeal than for simple timekeeping, often have purely mechanical movements and are powered by springs, even though mechanical movements are less accurate than more affordable quartz movements. Before the inexpensive miniaturization that became possible in the 20th century, most watches were "pocket watches," which often had covers and were carried in a pocket and attached to a watch chain or watch fob. Watches evolved in the 1600s from spring powered clocks, which appeared in the 1400s. Movement. A movement in watchmaking is the mechanism that measures the passage of time and displays the current time (and possibly other information including date, month and day). Movements may be entirely mechanical, entirely electronic (potentially with no moving parts), or a blend of the two. Most watches intended mainly for timekeeping today have electronic movements, with mechanical hands on the face of the watch indicating the time. Mechanical movements. Compared to electronic movements, mechanical watches are less accurate, often with errors of seconds per day, and they are sensitive to position and temperature. As well, they are costly to produce, they require regular maintenance and adjustment, and they are more prone to failure. Nevertheless, the "old world" craftsmanship of mechanical watches still attracts interest from part of the watch-buying public. Mechanical movements use an escapement mechanism to control and limit the unwinding of the watch, converting what would otherwise be a simple unwinding, into a controlled and periodic energy release. Mechanical movements also use a balance wheel together with the balance spring (also known as Hairspring) to control motion of the gear system of the watch in a manner analogous to the pendulum of a pendulum clock. The tourbillon, an optional part for mechanical movements, is a rotating frame for the escapement which is used to cancel out or reduce the effects of bias to the timekeeping of gravitational origin. Due to the complexity designing a tourbillon, they are very expensive, and only found in "prestige" watches. The pin-lever (also called Roskopf movement after its inventor, Georges Frederic Roskopf), is a cheaper version of the fully levered movement which was manufactured in huge quantities by many Swiss manufacturers as well as Timex, until it was replaced by quartz movements. Tuning fork watches use a type of electromechanical movements. Introduced by Bulova in 1960, they use a tuning fork at a precise frequency (most often 360 hertz) to drive a mechanical watch. The task of converting electronically pulsed fork vibration into rotary movement is done via two tiny jeweled fingers, called pawls. Tuning fork watches were rendered obsolete when electronic quartz watches were developed, because quartz watches were cheaper to produce and even more accurate. Electronic movements. Electronic movements have few or no moving parts, as they use the piezoelectric effect in a tiny quartz crystal to provide a stable time base for a mostly electronic movement. The crystal forms a quartz oscillator which resonates at a specific and highly stable frequency, and which can be used to accurately pace a timekeeping mechanism. For this reason, electronic watches are often called "quartz watches." Most quartz movements are primarily electronic but are geared to drive mechanical hands on the face of the watch in order to provide a traditional analog display of the time, which is still preferred by most consumers. The first prototypes of electronic quartz watches were made by the CEH research laboratory in Switzerland in 1962. The first quartz watch to enter production was the Seiko 35 SQ Astron, which appeared in 1969. Modern quartz movements are produced in very large quantities, and even the cheapest wristwatches typically have quartz movements. Whereas mechanical movements can typically be off by several seconds a day, an inexpensive quartz movement in a child's wristwatch may still be accurate to within half a second per day—ten times better than a mechanical movement.Some watchmakers combine the quartz and mechanical movements, such as the Seiko Spring Drive, introduced in 2005. Radio time signal watches are a type of electronic quartz watches which synchronizes (time transfer) its time with an external time source such as an atomic clocks, time signals from GPS navigation satellites, the German DCF77 signal in Europe, WWVB in the US, and others. Movements of this type synchronize not only the time of day but also the date, the leap-year status of the current year, and the current state of daylight saving time (on or off). Power sources. Traditional mechanical watch movements use a spiral spring called a mainspring as a power source. In "manual watches" the spring must be rewound by the user periodically by turning the watch crown. Antique pocketwatches were wound by inserting a separate key into a hole in the back of the watch and turning it. Most modern watches are designed to run 40 hours on a winding, so must be wound daily, but some run for several days and a few have 192-hour mainsprings and are wound weekly. A "self-winding" or "automatic" mechanism is one that rewinds the mainspring of a mechanical movement by the natural motions of the wearer's body. The first self-winding mechanism, for pocketwatches, was invented in 1770 by Abraham-Louis Perrelet; but the first "self-winding," or "automatic," wristwatch was the invention of a British watch repairer named John Harwood in 1923. This type of watch allows for a constant winding without special action from the wearer: it works by an eccentric weight, called a winding rotor, which rotates with the movement of the wearer's wrist. The back-and-forth motion of the winding rotor couples to a ratchet to automatically wind the mainspring. Self winding watches usually can also be wound manually so they can be kept running when not worn, or if the wearer's wrist motions don't keep the watch wound. Some electronic watches are also powered by the movement of the wearer of the watch. Kinetic powered quartz watches make use of the motion of the wearer's arm turning a rotating weight, which turns a generator to supply power to charge a rechargeable battery that runs the watch. The concept is similar to that of self-winding spring movements, except that electrical power is generated instead of mechanical spring tension. Electronic watches require electricity as a power source. Some mechanical movements and hybrid electronic-mechanical movements also require electricity. Usually the electricity is provided by a replaceable battery. The first use of electrical power in watches was as substitute for the mainspring, in order to remove the need for winding. The first electrically-powered watch, the Hamilton Electric 500, was released in 1957 by the Hamilton Watch Company of Lancaster, Pennsylvania. Watch batteries (strictly speaking cells) are specially designed for their purpose. They are very small and provide tiny amounts of power continuously for very long periods (several years or more). In most cases, replacing the battery requires a trip to a watch-repair shop or watch dealer; this is especially true for watches that are designed to be water-resistant, as special tools and procedures are required to ensure that the watch remains water-resistant after battery replacement. Silver-oxide and lithium batteries are popular today; mercury batteries, formerly quite common, are no longer used, for environmental reasons. Cheap batteries may be alkaline, of the same size as silver-oxide but providing shorter life. Rechargeable batteries are used in some solar powered watches. Solar powered watches are powered by light. A photovoltaic cell on the face (dial) of the watch converts light to electricity, which in turn is used to charge a rechargeable battery or capacitor. The movement of the watch draws its power from the rechargeable battery or capacitor. As long as the watch is regularly exposed to fairly strong light (such as sunlight), it never needs battery replacement, and some models need only a few minutes of sunlight to provide weeks of energy (as in the Citizen Eco-Drive). Some of the early solar watches of the 1970s had innovative and unique designs to accommodate the array of solar cells needed to power them (Nepro, Sicura and some models by Cristalonic, Alba, Seiko and Citizen). As the decades progressed and the efficiency of the solar cells increased while the power requirements of the movement and display decreased, solar watches began to be designed to look like other conventional watches. A rarely used power source is the temperature difference between the wearer's arm and the surrounding environment (as applied in the Citizen Eco-Drive Thermo). Analog. Traditionally, watches have displayed the time in analog form, with a numbered dial upon which are mounted at least a rotating hour hand and a longer, rotating minute hand. Many watches also incorporate a third hand that shows the current second of the current minute. Watches powered by quartz have second hands that snap every second to the next marker. Watches powered by a mechanical movement have a "sweep second hand", the name deriving from its uninterrupted smooth (sweeping) movement across the markers, although this is actually a misnomer; the hand merely moves in smaller steps, typically 1 6 of a second, corresponding to the beat of the balance wheel. All of the hands are normally mechanical, physically rotating on the dial, although a few watches have been produced with “hands” that are simulated by a liquid-crystal display. Analog display of the time is nearly universal in watches sold as jewelry or collectibles, and in these watches, the range of different styles of hands, numbers, and other aspects of the analog dial is very broad. In watches sold for timekeeping, analog display remains very popular, as many people find it easier to read than digital display; but in timekeeping watches the emphasis is on clarity and accurate reading of the time under all conditions (clearly marked digits, easily visible hands, large watch faces, etc.). They are specifically designed for the left wrist with the stem (the knob used for changing the time) on the right side of the watch; this makes it easy to change the time without removing the watch from the hand. This is the case if one is right-handed and the watch is worn on the left wrist (as is traditionally done). If one is left-handed and wears the watch on the right wrist, one has to remove the watch from the wrist to reset the time or to wind the watch. Analog watches as well as clocks are often marketed showing a display time of approximately 10:09 or 10:10. This creates a visually pleasing smile-like face on upper half of the watch. Digital displays often show a time of 12:38, where the increases in the numbers from left to right culminating in the fully-lit numerical display of the 8 also gives a positive feeling. Digital. Since the advent of electronic watches that incorporate small computers, digital displays have also been available. A digital display simply shows the time as a number, "e.g.," 12:40'" instead of a short hand pointing towards the number 12 and a long hand pointing towards the number 8 on a dial. Some watches, such as the Timex Datalink USB, feature dot matrix displays. The first digital watch, a Pulsar prototype in 1970, was invented by bulgarian Peter Petroff and developed jointly by Hamilton Watch Company and Electro-Data. John Bergey, the head of Hamilton's Pulsar division, said that he was inspired to make a digital timepiece by the then-futuristic digital clock that Hamilton themselves made for the 1968 science fiction film". On April 4, 1972 the Pulsar was finally ready, made in 18-carat gold and sold for $2,100 at retail. It had a red light-emitting diode (LED) display. Another early digital watch innovator, Roger Riehl's Synchronar Mark 1, provided an LED display and used solar cells to power the internal nicad batteries. Most watches with LED displays required that the user press a button to see the time displayed for a few seconds, because LEDs used so much power that they could not be kept operating continuously. Watches with LED displays were popular for a few years, but soon the LED displays were superseded by liquid crystal displays (LCDs), which used less battery power and were much more convenient in use, with the display always visible and no need to push a button before seeing the time. The first LCD watch with a six-digit LCD was the 1973 Seiko 06LC, although various forms of early LCD watches with a four-digit display were marketed as early as 1972 including the 1972, and the Cox Electronic Systems Quarza. Digital watches were very expensive and out of reach to the common consumer until 1975, when Texas Instruments started to mass produce LED watches inside a plastic case. These watches, which first retailed for only $20, reduced to $10 in 1976, saw Pulsar lose $6 million and the brand sold to competitors twice in only a year, eventually becoming a subsidiary of Seiko and going back to making only analogue quartz watches. From the 1980s onward, digital watch technology vastly improved. In 1982 Seiko produced a watch with a small television screen built in, and Casio produced a digital watch with a thermometer as well as another that could translate 1,500 Japanese words into English. In 1985, Casio produced the CFX-400 scientific calculator watch. In 1987 Casio produced a watch that could dial your telephone number and Citizen revealed one that would react to your voice. In 1995 Timex release a watch which allowed the wearer to download and store data from a computer to his wrist. Since their apex during the late 1980s to mid 1990s high technology fad, digital watches have "mostly" devolved into a simpler, less expensive basic time piece with little variety between models. Despite these many advances, almost all watches with digital displays are used as timekeeping watches. Expensive watches for collectors rarely have digital displays since there is little demand for them. Less craftsmanship is required to make a digital watch face and most collectors find that analog dials (especially with complications) vary in quality more than digital dials due to the details and finishing of the parts that make up the dial (thus making the differences between a cheap and expensive watch more evident). Functions. All watches provide the time of day, giving at least the hour and minute, and usually the second. Most also provide the current date, and often the day of the week as well. However, many watches also provide a great deal of information beyond the basics of time and date. Some watches include alarms. Other elaborate and more expensive watches, both pocket and wrist models, also incorporate striking mechanisms or repeater functions, so that the wearer could learn the time by the sound emanating from the watch. This announcement or striking feature is an essential characteristic of true clocks and distinguishes such watches from ordinary timepieces. This feature is available on most digital watches. A "complicated watch" has one or more functions beyond the basic function of displaying the time and the date; such a functionality is called a complication. Two popular complications are the chronograph'" complication, which is the ability of the watch movement to function as a stopwatch, and the "'moonphase'" complication, which is a display of the lunar phase. Other more expensive complications include Tourbillion, Perpetual calendar, Minute repeater, and Equation of time. A truly complicated watch has many of these complications at once (see Calibre 89 from Patek Philippe for instance). Among watch enthusiasts, complicated watches are especially collectible. Some watches include a second 12-hour display for UTC (as Pontos Grand Guichet GMT). The similar-sounding terms "'chronograph'" and "'chronometer'" are often confused, although they mean altogether different things. A chronograph has a stopwatch complication, as explained above, while a chronometer watch has a high quality mechanical or a thermo-compensated quartz movement that has been tested and certified to operate within a certain standard of accuracy by the COSC (Contrôle Officiel Suisse des Chronomètres). The concepts are different but not mutually exclusive; so a watch can be a chronograph, a chronometer, both, or neither. Fashion. Wristwatches are often appreciated as jewelry or as collectible works of art rather than just as timepieces. This has created several different markets for wristwatches, ranging from very inexpensive but accurate watches (intended for no other purpose than telling the correct time) to extremely expensive watches that serve mainly as personal adornment or as examples of high achievement in miniaturization and precision mechanical engineering. Traditionally, men's dress watches appropriate for informal, semi-formal, and formal attire are gold, thin, simple, and plain, but recent conflation of dressiness and high price has led to a belief among some that expensive rugged, complicated, or sports watches are also dressy because of their high cost. Some dress watches have a cabochon on the crown and many women's dress watches have faceted gemstones on the face, bezel, or bracelet. Many fashion and department stores offer a variety of less-expensive, trendy, "costume" watches (usually for women), many of which are similar in quality to basic quartz timepieces but which feature bolder designs. In the 1980s, the Swiss Swatch company hired graphic designers to redesign a new annual collection of non-repairable watches. Still another market is that of "geek" watches—watches that not only tell the time, but incorporate computers, satellite navigation, complications of various orders, and many other features that may be quite removed from the basic concept of timekeeping. A dual-time watch is designed for travelers, allowing them to see what time it is at home when they are elsewhere. Most companies that produce watches specialize in one or some of these markets. Companies such as Patek Philippe, Blancpain, and Jaeger-LeCoultre specialize in simple and complicated mechanical dress watches; companies such as TAG Heuer, Breitling, and Rolex specialize in rugged, reliable mechanical watches for sport and aviation use. Companies such as Casio, Timex, and Seiko specialize in watches as affordable timepieces or multifunctional computers. Computerized multi-function watches. Many computerized wristwatches have been developed, but none have had long-term sales success, because they have awkward user interfaces due to the tiny screens and buttons, and a short battery life. As miniaturized electronics became cheaper, watches have been developed containing calculators, tonometers, barometers, altimeters, video games, digital cameras, keydrives, GPS receivers and cellular phones. In the early 1980s Seiko marketed a watch with a television in it. Such watches have also had the reputation as unsightly and thus mainly geek toys. Snyper watches developed a timekeeper with a computer CPU. Several companies have however attempted to develop a computer contained in a wristwatch (see also wearable computer). For space travel. Zero gravity environment and other extreme conditions encountered by astronauts in space requires the use of specially tested watches. On April 12, 1961, Yuri Gagarin wore a Shturmanskie (a transliteration of Штурманские which actually means "navigators'") wristwatch during his historic first flight into space. The Shturmanskie was manufactured at the First Moscow Factory. Since 1964, the watches of the First Moscow Factory have been marked by a trademark "ПОЛЕТ" and "POLJOT", which means "flight" in Russian and is a tribute to the number of many space trips its watches have accomplished. In the late 1970s, Poljot launched a new chrono movement, the 3133. With a 23 jewel movement and manual winding (43 hours), it was a modified Russian version of the Swiss Valjoux 7734 of the early 1970s. Poljot 3133 were taken into space by astronauts from Russia, France, Germany and Ukraine. On the arm of Valeriy Polyakov, a Poljot 3133 chronograph movement-based watch set a space record for the longest space flight in history. During the 1960s, a large range of watches were tested for durability and precision under extreme temperature changes and vibrations. The Omega Speedmaster Professional was selected by U.S. space agencies. (For a list of NASA-certified watches, see this footnote). TAG Heuer became the first Swiss watch in space thanks to an Heuer Stopwatch, worn by John Glenn in 1962 when he piloted the Friendship 7 on the first manned U.S. orbital mission. (The company was then called "Heuer". TAG had not yet been formed in 1962.) The Breitling Navitimer Cosmonaute was designed with a 24-hour analog dial to avoid confusion between AM and PM, which are meaningless in space. It was first worn in space by U.S. astronaut Scott Carpenter on May 24, 1962 in the Aurora 7 mercury capsule. Since 1994 Fortis is the exclusive supplier for manned space missions authorized by the Russian Federal Space Agency. China National Space Administration (CNSA) astronauts wear the Fiyta spacewatches. At BaselWorld, 2008, Seiko announced the creation of the first watch ever designed specifically for a space walk. For scuba diving. Watches may be crafted to become water resistant. These watches are sometimes called diving watches when they are suitable for scuba diving or saturation diving. The International Organization for Standardization issued a standard for water resistant watches which also prohibits the term "waterproof" to be used with watches, which many countries have adopted. Water resistance is achieved by the gaskets which form a watertight seal, used in conjunction with a sealant applied on the case to help keep water out. The material of the case must also be tested in order to pass as water resistant. The watches are tested in theoretical depths, thus a watch with a 50 meter rating will be water resistant if it is stationary and under 50 meters of still water for a set amount of time. The most commonly used method for testing the water resistance is by depressurizing a small chamber containing the watch. A sensor measures the movement of the case and crystal to gauge how much pressure the watch is losing and how fast. The watch never touches water in this type of machine. Another type of machine is used for very deep measure tests, where the watch is immersed in A fixed-wing aircraft'" is an aircraft capable of heavier-than-air flight whose lift is generated not by wing motion relative to the aircraft, but by forward motion through the air. The term is used to distinguish from rotary-wing aircraft or ornithopters, where the movement of the wing surfaces relative to the aircraft generates lift. In the United States and Canada, the term "'airplane'" is used; the term "'aeroplane'" is more common in the rest of the English-speaking countries, including Great Britain, the rest of the Commonwealth countries (excluding Canada), and the Republic of Ireland. These terms refer to any fixed wing aircraft powered by propellers or jet engines. The word derives from the Greek "αέρας" (aéras-) ("air") and "-plane". The spelling "aeroplane" is the older of the two, dating back to the mid-late 19th century. Some fixed-wing aircraft may be remotely or robot controlled. Overview. Fixed-wing aircraft range from small training and recreational aircraft to wide-body aircraft and military cargo aircraft. The word also embraces aircraft with folding or removable wings that are intended to fold when on the ground. This is usually to ease storage or facilitate transport on, for example, a vehicle trailer or the powered lift connecting the hangar deck of an aircraft carrier to its flight deck. It also embraces aircraft with "variable-sweep wings", such as the General Dynamics F-111, Grumman F-14 Tomcat and the Panavia Tornado, which can vary the sweep angle of their wings during flight. There are also rare examples of aircraft which can vary the angle of incidence of their wings in flight, such the F-8 Crusader, which are also considered to be "fixed-wing". The two necessities for fixed-wing aircraft are air flow over the wings for lifting of the aircraft, and an area for landing. The majority of aircraft, however, also need an airport with the infrastructure to receive maintenance, restocking, refueling and for the loading and unloading of crew, cargo and passengers. Some aircraft are capable of take off and landing on ice, aircraft carriers, snow, or calm water. The aircraft is the second fastest method of transport, after the rocket. Commercial jet aircraft can reach up to 1000 km h. Certified single-engined, piston-driven aircraft are capable of reaching up to 435 km h, while Experimental (modified WW II fighters) piston singles reach over 815 km h at the Reno Air Races. Supersonic aircraft (military, research and a few private aircraft) can reach speeds faster than sound. The speed record for a plane powered by an air-breathing engine is held by the experimental NASA X-43, which reached nearly ten times the speed of sound. The biggest aircraft built is the Antonov An-225, while the fastest still in production is the Mikoyan MiG-31. The biggest supersonic jet ever produced is the Tupolev Tu-160. Structure. The structure of a fixed-wing aircraft consists of the following major parts: Some varieties of aircraft, such as flying wing aircraft, may lack a discernible fuselage structure and horizontal or vertical stabilizers. Controls. A number of controls allow pilots to direct aircraft in the air. The controls found in a typical fixed-wing aircraft are as follows: The controls may allow full or partial automation of flight, such as an autopilot, a wing leveler, or a flight management system. Pilots adjust these controls to select a specific attitude or mode of flight, and then the associated automation maintains that attitude or mode until the pilot disables the automation or changes the settings. In general, the larger and or more complex the aircraft, the greater the amount of automation available to pilots. Control duplication. On an aircraft with a pilot and copilot, or instructor and trainee, the aircraft is made capable of control without the crew changing seats. The most common arrangement is two complete sets of controls, one for each of two pilots sitting side by side, but in some aircraft (military fighter aircraft, some taildraggers and aerobatic aircraft) the dual sets of controls are arranged one in front of the other. A few of the less important controls may not be present in both positions, and one position is usually intended for the pilot in command ("e.g.," the left "captain's seat" in jet airliners). Some small aircraft use controls that can be moved from one position to another, such as a single yoke that can be swung into position in front of either the left-seat pilot or the right-seat pilot (i.e. Beechcraft Bonanza). Aircraft that require more than one pilot usually have controls intended to suit each pilot position, but still with sufficient duplication so that all pilots can fly the aircraft alone in an emergency. For example, in jet airliners, the controls on the left (captain's) side include both the basic controls and those normally manipulated by the pilot in command, such as the tiller, whereas those of the right (first officer's) side include the basic controls again and those normally manipulated by the copilot, such as flap levers. The unduplicated controls that are required for flight are positioned so that they can be reached by either pilot, but they are often designed to be more convenient to the pilot who manipulates them under normal condition. Aircraft instruments. "Instruments" provide information to the pilot. "Flight instruments" provide information about the aircraft's speed, direction, altitude, and orientation. "Powerplant instruments" provide information about the the status of the aircraft's engines and APU. "Systems instruments" provide information about the aircraft's other systems, such as fuel delivery, electrical, and pressurization. "Navigation and communication instruments" include all the aircraft's radios. Instruments may operate mechanically or electrically, requiring 12VDC, 24VDC, or 400 Hz power systems. An aircraft that uses computerized CRT or LCD displays almost exclusively is said to have a "glass cockpit." Propulsion. Fixed-wing aircraft can be sub-divided according to the means of propulsion they use. Unpowered aircraft. Aircraft that primarily intended for unpowered flight include gliders (sometimes called sailplanes), hang gliders and paragliders. These are mainly used for recreation. After launch, the energy for sustained gliding flight is obtained through the skilful exploitation of rising air in the atmosphere. Gliders that are used for the sport of gliding have high aerodynamic efficiency. The highest lift-to-drag ratio is 70:1, though 50:1 is more common. Glider flights of thousands of kilometers at average speeds over 200 km h have been achieved. The glider is most commonly launched by a tow-plane or by a winch. Some gliders, called motor gliders, are equipped with engines (often retractable) and some are capable of self-launching. The most numerous unpowered aircraft are hang gliders and paragliders. These are foot-launched and are generally slower, less massive, and less expensive than sailplanes. Hang gliders most often have flexible wings which are given shape by a frame, though some have rigid wings. This is in contrast to paragliders which have no frames in their wings. Military gliders have been used in war to deliver assault troops, and specialized gliders have been used in atmospheric and aerodynamic research. Experimental aircraft and winged spacecraft have also made unpowered landings. Propeller aircraft. Smaller and older propeller aircraft make use of reciprocating internal combustion engines that turns a propeller to create thrust. They are quieter than jet aircraft, but they fly at lower speeds, and have lower load capacity compared to similar sized jet powered aircraft. However, they are significantly cheaper and much more economical than jets, and are generally the best option for people who need to transport a few passengers and or small amounts of cargo. They are also the aircraft of choice for pilots who wish to own an aircraft. Turboprop aircraft are a halfway point between propeller and jet: they use a turbine engine similar to a jet to turn propellers. These aircraft are popular with commuter and regional airlines, as they tend to be more economical on shorter journeys. Jet aircraft. Jet aircraft make use of turbines for the creation of thrust. These engines are much more powerful than a reciprocating engine. As a consequence, they have greater weight capacity and fly faster than propeller driven aircraft. One drawback, however, is that they are noisy; this makes jet aircraft a source of noise pollution. However, turbofan jet engines are quieter, and they have seen widespread usage partly for that reason. The jet aircraft was developed in Germany in 1931. The first jet was the Heinkel He 178, which was tested at Germany's Marienehe Airfield in 1939. In 1943 the Messerschmitt Me 262, the first jet fighter aircraft, went into service in the German Luftwaffe. In the early 1950s, only a few years after the first jet was produced in large numbers, the De Havilland Comet became the world's first jet airliner. However, the early Comets were beset by structural problems discovered after numerous pressurization and depressurization cycles, leading to extensive redesigns. Most wide-body aircraft can carry hundreds of passengers and several tons of cargo, and are able to travel for distances up to 17,000 km. Aircraft in this category are the Boeing 747, Boeing 767, Boeing 777, the upcoming Boeing 787 and Airbus A380, Airbus A300 A310, Airbus A330, Airbus A340, Airbus A380, Lockheed L-1011 TriStar, McDonnell Douglas DC-10, McDonnell Douglas MD-11, Ilyushin Il-86, and Ilyushin Il-96. Jet aircraft possess high cruising speeds (700 to 900 km h, or 400 to 550 mph) and high speeds for take-off and landing (150 to 250 km h). Due to the speed needed for takeoff and landing, jet aircraft make use of flaps and leading edge devices for the control of lift and speed, as well as thrust reversers to direct the airflow forward, slowing down the aircraft upon landing. Supersonic jet aircraft. Supersonic aircraft, such as military fighters and bombers, Concorde, and others, make use of special turbines (often utilizing afterburners), that generate the huge amounts of power for flight faster than the speed of the sound. Flight at supersonic speed creates more noise than flight at subsonic speeds, due to the phenomenon of sonic booms. This limits supersonic flights to areas of low population density or open ocean. When approaching an area of heavier population density, supersonic aircraft are obliged to fly at subsonic speed. Due to the high costs, limited areas of use and low demand there are no longer any supersonic aircraft in use by any major airline. The last Concorde flight was on 26 November 2003. Unmanned Aircraft. An aircraft is said to be 'unmanned' when there is no person in the cockpit of the plane. The aircraft is controlled only by remote controls or other electronic devices. Rocket-powered aircraft. Experimental rocket powered aircraft were developed by the Germans as early as World War II (see Me 163 Komet), and about 29 were manufactured and deployed. The first fixed wing aircraft to break the sound barrier in level flight was a rocket plane- the Bell X-1. The later North American X-15 was another important rocket plane that broke many speed and altitude records and laid much of the groundwork for later aircraft and spacecraft design. Rocket aircraft are not in common usage today, although rocket-assisted takeoffs are used for some military aircraft. SpaceShipOne is the most famous current rocket aircraft, being the testbed for developing a commercial sub-orbital passenger service; another rocket plane is the XCOR EZ-Rocket; and there is of course the Space Shuttle. Ramjet aircraft. A ramjet is a form of jet engine that contains no major moving parts and can be particularly useful in applications requiring a small and simple engine for high speed use, such as missiles. The D-21 Tagboard was an unmanned Mach 3+ reconnaissance drone that was put into production in 1969 for spying, but due to the development of better spy satellites, it was cancelled in 1971. The SR-71's Pratt & Whitney J58 engines ran 80% as ramjets at high speeds (Mach 3.2). The SR-71 was dropped at the end of the Cold War, then brought back during the 1990s. They were used also in the Gulf War. The last SR-71 flight was in October 2001. Scramjet aircraft. Scramjet aircraft are in the experimental stage. The Boeing X-43 is an experimental scramjet with a world speed record for a jet-powered aircraft Mach 9.7, nearly 12,000 km h (≈ 7,000 mph) at an altitude of about 36,000 meters (≈ 110,000 ft). The X-43A set the flight speed record on 16 November 2004. History. The dream of flight goes back to the days of pre-history. Many stories from antiquity involve flight, such as the Greek legend of Icarus and Daedalus, and the Vimana in ancient Indian epics. Around 400 BC, Archytas, the Ancient Greek philosopher, mathematician, astronomer, statesman, and strategist, was reputed to have designed and built the first artificial, self-propelled flying device, a bird-shaped model propelled by a jet of what was probably steam, said to have actually flown some 200 meters. This machine, which its inventor called "The Pigeon" (Greek: "Περιστέρα" "Peristera"), may have been suspended on a wire or pivot for its flight. Amongst the first recorded attempts at aviation were the attempts made by Yuan Huangtou in the 6th century and by Abbas Ibn Firnas in the 9th century. Leonardo da Vinci researched the wing design of birds and designed a man-powered aircraft in his "Codex on the Flight of Birds" (1502). In the 1630s, Lagari Hasan Çelebi flew in a rocket artificially powered by gunpowder. In the 18th century, Francois Pilatre de Rozier and Francois d'Arlandes flew in an aircraft lighter than air, a balloon. The biggest challenge became to create other craft, capable of controlled flight. Sir George Cayley, the founder of the science of aerodynamics, was building and flying models of fixed-wing aircraft as early as 1803, and he built a successful passenger-carrying glider in 1853. In 1856, Frenchman Jean-Marie Le Bris made the first powered flight, by having his glider "L'Albatros artificiel" pulled by a horse on a beach. On 28 August 1883, the American John J. Montgomery made a controlled flight in a glider. Other aviators who had made similar flights at that time were Otto Lilienthal, Percy Pilcher and Octave Chanute. The first self-powered aircraft was created by an Englishman by the name of John Stringfellow of Chard in Somerset, who created a self-powered model aircraft that had its first successful flight in 1848. Clément Ader constructed and designed a self-powered aircraft. On October 9, 1890, Ader attempted to fly the Éole, which succeeded in taking off and flying uncontrolled a distance of approximately 50 meters before witnesses. In August 1892 the Avion II flew for a distance of 200 meters, and on October 14, 1897, Avion III flew a distance of more than 300 meters. Richard Pearse made a poorly documented uncontrolled flight on March 31, 1903 in Waitohi, New Zealand, and on August 28, 1903 in Hanover, the German Karl Jatho made his first flight. Alberto Santos-Dumont, a Brazilian living in France, built the first practical dirigible balloons at the end of the nineteenth century. In 1906 he flew the first fixed wing aircraft, the "14-bis", which was of his and Gabriel Voisin's design. A later design of his, the "Demoiselle", introduced ailerons and brought all around pilot control during a flight. The Wright Brothers made their first successful test flights on December 17, 1903. This flight is recognized by the Fédération Aéronautique Internationale (FAI), the standard setting and record-keeping body for aeronautics and astronautics, as "the first sustained and controlled heavier-than-air powered flight". By 1905, the Wright Flyer III was capable of fully controllable, stable flight for substantial periods. World War I served as a testbed for the use of the aircraft as a weapon. Initially seen by the generals as a "toy", aircraft demonstrated their potential as mobile observation platforms, then proved themselves to be machines of war capable of causing casualties to the enemy. "Fighter aces" appeared, described as "knights of the air"; the greatest (by number of air victories) was the German Manfred von Richthofen, the "Red Baron". On the side of the allies, the ace with the highest number of downed aircraft was René Fonck, of France. Following the war, aircraft technology continued to develop. Alcock and Brown crossed the Atlantic non-stop for the first time in 1919, a feat first performed solo by Charles Lindbergh in 1927. The first commercial flights took place between the United States and Canada in 1919. The turbine or the jet engine was in development in the 1930s; military jet aircraft began operating in the 1940s. Aircraft played a primary role in the Second World War, having a presence in all the major battles of the war, Pearl Harbor, the battles of the Pacific, the Battle of Britain. They were an essential component of the military strategies of the period, such as the German Blitzkrieg or the American and Japanese aircraft carrier campaigns of the Pacific. In October 1947, Chuck Yeager was the first person to exceed the speed of sound, flying the Bell X-1. Aircraft in a civil military role continued to feed and supply Berlin in 1948, when access to railroads and roads to the city, completely surrounded by Eastern Germany, were blocked, by order of the Soviet Union. The first commercial jet, the de Havilland Comet, was introduced in 1952. A few Boeing 707s, the first widely successful commercial jet, are still in service after nearly 50 years. The Boeing 727 was another widely used passenger aircraft, and the Boeing 747 was the world's biggest commercial aircraft between 1970 and 2005, when it was surpassed by the Airbus A380. Designing and constructing an aircraft. Small aircraft can be designed and constructed by amateurs as homebuilts, such as Chris Neil's Woody Helicopter. Other aviators with less knowledge make their aircraft using pre-manufactured kits, assembling the parts into a complete aircraft. Most aircraft are constructed by companies with the objective of producing them in quantity for customers. The design and planning process, including safety tests, can last up to four years for small turboprops, and up to 12 years for aircraft with the capacity of the A380. During this process, the objectives and design specifications of the aircraft are established. First the construction company uses drawings and equations, simulations, wind tunnel tests and experience to predict the behavior of the aircraft. Computers are used by companies to draw, plan and do initial simulations of the aircraft. Small models and mockups of all or certain parts of the aircraft are then tested in wind tunnels to verify the aerodynamics of the aircraft. When the design has passed through these processes, the company constructs a limited number of these aircraft for testing on the ground. Representatives from an aviation governing agency often make a first flight. The flight tests continue until the aircraft has fulfilled all the requirements. Then, the governing public agency of aviation of the country authorizes the company to begin production of the aircraft. In the United States, this agency is the Federal Aviation Administration (FAA), and in the European Union, Joint Aviation Authorities (JAA). In Canada, the public agency in charge and authorizing the mass production of aircraft is Transport Canada. In the case of the international sales of aircraft, a license from the public agency of aviation or transports of the country where the aircraft is also to be used is necessary. For example, aircraft from Airbus need to be certified by the FAA to be flown in the United States and vice versa, aircraft of Boeing need to be approved by the JAA to be flown in the European Union. Quieter aircraft are becoming more and more needed due to the increase in air traffic, particularly over urban areas, as noise pollution is a major concern. MIT and Cambridge University have been designing delta-wing aircraft that are 25 times more silent (63 dB) than current craft and can be used for military and commercial purposes. The project is called the Silent Aircraft Initiative, but production models will not be available until around 2030. Industrialized production. There are few companies that produce aircraft on a large scale. However, the production of an aircraft for one company is a process that actually involves dozens, or even hundreds, of other companies and plants, that produce the parts that go into the aircraft. For example, one company can be responsible for the production of the landing gear, while another one is responsible for the radar. The production of such parts is not limited to the same city or country; in the case of large aircraft manufacturing companies, such parts can come from all over the world. The parts are sent to the main plant of the aircraft company, where the production line is located. In the case of large aircraft, production lines dedicated to the assembly of certain parts of the aircraft can exist, especially the wings and the fuselage. When complete, an aircraft goes through a set of rigorous inspection, to search for imperfections and defects, and after being approved by the inspectors, the aircraft is tested by a pilot, in a flight test, in order to assure that the controls of the aircraft are working properly. With this final test, the aircraft is ready to receive the "final touchups" (internal configuration, painting, etc), and is then ready for the customer. Comparisons. There are three main statistics which may be used to compare the safety of various forms of travel: It is worth noting that the air industry's insurers base their calculations on the "number of deaths per journey" statistic while the industry itself generally uses the "number of deaths per kilometre" statistic in press releases. Causes. The majority of aircraft accidents are a result of human error on the part of the pilot(s) or controller(s). After human error, mechanical failure is the biggest cause of air accidents, which sometimes also can involve a human component; e.g., negligence of the airline in carrying out proper maintenance. Adverse weather is the third largest cause of accidents. Icing, downbursts, and low visibility are often major contributors to weather related crashes. Birds have been ranked as a major cause for large rotor bursts on commercial turboprop engines, spurring extra safety measures to keep birds away. Technological advances such as ice detectors also help pilots ensure the safety of their aircraft.