ratio of word probabilities predicted from brain for telephone and watch

close this window

telephone

watch

top 10 words in brain distribution (in article):
century design style modern allow american time popular english begin
top 10 words in brain distribution (in article):
woman people death form person consider word world refer time
top 10 words in brain distribution (not in article):
wear horse woman clothe saddle material dress fashion type ride
top 10 words in brain distribution (not in article):
love sexual god pyramid sex religion female evil culture human
times more probable under telephone 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under watch
(words not in the model)
The telephone'" (from the, "tēle", "far" and φωνή, "phōnē", "voice") is a telecommunications device that is used to transmit and receive electronically or digitally encoded sound (most commonly speech) between two or more people conversing. It is one of the most common household appliances in the developed world today. Most telephones operate through transmission of electric signals over a complex telephone network which allows almost any phone user to communicate with almost any other user. Graphic symbols used to designate telephone service or phone-related information in print, signs, and other media include,, and. Basic principle. A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active state or "off hook" by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator that produces DTMF tones which are sent to the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (generally over 100 volts AC) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call. When a landline phone is inactive or "on hook", its alerting device is connected across the line through a capacitor, which prevents DC current from flowing through the line. The circuitry at the telephone exchange detects the absence of DC current flow and thus that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, the ringing signal transmitted by the telephone exchange activates the alerting device on the line. When the called party picks up the handset, the switchhook disconnects the alerting device and connects the audio circuitry to the line. The resulting low resistance now causes DC current to flow through this line, confirming that the called phone is now active. Both phones being active and connected through the exchange, the parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call. Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances. In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter. A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components. History. Credit for inventing the electric telephone remains in dispute. As with other great inventions such as radio, television, light bulb, and computer, there were several inventors who did pioneer experimental work on voice transmission over a wire and improved on each other's ideas. Innocenzo Manzetti, Antonio Meucci, Johann Philipp Reis, Elisha Gray, Alexander Graham Bell, and Thomas Edison, among others, have all been credited with pioneer work on the telephone. A Hungarian engineer, Tivadar Puskás invented the Telephone exchange in 1876. The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive. Early commercial instruments. Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" -their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument. Early telephones were locally powered, using either a dynamic transmitter or by the powering of a transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Early telephones used a single wire for the subscriber's line, with ground return used to complete the circuit (as used in telegraphs). The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive. At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential. Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire, and later over the same wire, but with a condenser (capacitor) in series with the bell coil to allow the AC ringer signal through while still blocking DC (keeping the phone "on hook"). Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking. Rural and other telephones that were not on a common battery exchange had a magneto or hand-cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator. In the 1890s a new smaller style of telephone was introduced, packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery and magneto were in a separate "bell box." In phones connected to common battery exchanges, the bell box was installed under a desk, or other out of the way place, since it did not need a battery or magneto. Cradle designs were also used at this time, having a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular. Disadvantages of single wire operation such as crosstalk and hum from nearby AC power wires had already led to the use of twisted pairs and, for long distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long distance calls from their own telephones but made an appointment to use a special sound proofed long distance telephone booth furnished with the latest technology. What turned out to be the most popular and longest lasting physical style of telephone was introduced in the early 20th century, including Bell's Model 102. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use sat in a cradle in the base unit. The of the Model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure. The dial switch in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1-10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle. After the 1930s, the base also enclosed the bell and induction coil, obviating the old separate bell box. Power was supplied to each subscriber line by central office batteries instead of a local battery, which required periodic service. For the next half century, the network behind the telephone became progressively larger and much more efficient, but after the dial was added the instrument itself changed little until touch tone replaced the dial in the 1960s. Digital telephony. The Public Switched Telephone Network (PSTN) has gradually evolved towards digital telephony which has improved the capacity and quality of the network. End-to-end analog telephone networks were first modified in the early 1960s by upgrading transmission networks with T1 carrier systems. Later technologies such as SONET and fiber optic transmission methods further advanced digital transmission. Although analog carrier systems existed, digital transmission made it possible to significantly increase the number of channels multiplexed on a single transmission medium. While today the end instrument remains analog, the analog signals reaching the aggregation point (Serving Area Interface (SAI) or the central office (CO)) are typically converted to digital signals. Digital loop carriers (DLC) are often used, placing the digital network ever closer to the customer premises, relegating the analog local loop to legacy status. IP telephony. Internet Protocol (IP) telephony (also known as Voice over Internet Protocol, VoIP), is a disruptive technology that is rapidly gaining ground against traditional telephone network technologies. As of January 2005, up to 10% of telephone subscribers in Japan and South Korea have switched to this digital telephone service. A January 2005 Newsweek article suggested that Internet telephony may be "the next big thing." As of 2006 many VoIP companies offer service to consumers and businesses. IP telephony uses an Internet connection and hardware IP Phones or softphones installed on personal computers to transmit conversations encoded as data packets. In addition to replacing POTS (plain old telephone service), IP telephony services are also competing with mobile phone services by offering free or lower cost connections via WiFi hotspots. VoIP is also used on private networks which may or may not have a connection to the global telephone network. Usage. By the end of 2006, there were a total of nearly 4 billion mobile and fixed-line subscribers and over 1 billion Internet users worldwide. This included 1.27 billion fixed-line subscribers and 2.68 billion mobile subscribers. Telephone operating companies. In some countries, many telephone operating companies (commonly abbreviated to "telco" in American English) are in competition to provide telephone services. Some of them are included in the following list. However, the list only includes facilities based providers and not companies which lease services from facilities based providers in order to serve their customers. A watch'" is a timepiece that is made to be worn on a person. The term now usually refers to a "wristwatch", which is worn on the wrist with a strap or bracelet. In addition to the time, modern watches often display the day, date, month and year, and electronic watches may have many other functions. Most inexpensive and medium-priced watches used mainly for timekeeping are electronic watches with quartz movements. Expensive, collectible watches valued more for their workmanship and aesthetic appeal than for simple timekeeping, often have purely mechanical movements and are powered by springs, even though mechanical movements are less accurate than more affordable quartz movements. Before the inexpensive miniaturization that became possible in the 20th century, most watches were "pocket watches," which often had covers and were carried in a pocket and attached to a watch chain or watch fob. Watches evolved in the 1600s from spring powered clocks, which appeared in the 1400s. Movement. A movement in watchmaking is the mechanism that measures the passage of time and displays the current time (and possibly other information including date, month and day). Movements may be entirely mechanical, entirely electronic (potentially with no moving parts), or a blend of the two. Most watches intended mainly for timekeeping today have electronic movements, with mechanical hands on the face of the watch indicating the time. Mechanical movements. Compared to electronic movements, mechanical watches are less accurate, often with errors of seconds per day, and they are sensitive to position and temperature. As well, they are costly to produce, they require regular maintenance and adjustment, and they are more prone to failure. Nevertheless, the "old world" craftsmanship of mechanical watches still attracts interest from part of the watch-buying public. Mechanical movements use an escapement mechanism to control and limit the unwinding of the watch, converting what would otherwise be a simple unwinding, into a controlled and periodic energy release. Mechanical movements also use a balance wheel together with the balance spring (also known as Hairspring) to control motion of the gear system of the watch in a manner analogous to the pendulum of a pendulum clock. The tourbillon, an optional part for mechanical movements, is a rotating frame for the escapement which is used to cancel out or reduce the effects of bias to the timekeeping of gravitational origin. Due to the complexity designing a tourbillon, they are very expensive, and only found in "prestige" watches. The pin-lever (also called Roskopf movement after its inventor, Georges Frederic Roskopf), is a cheaper version of the fully levered movement which was manufactured in huge quantities by many Swiss manufacturers as well as Timex, until it was replaced by quartz movements. Tuning fork watches use a type of electromechanical movements. Introduced by Bulova in 1960, they use a tuning fork at a precise frequency (most often 360 hertz) to drive a mechanical watch. The task of converting electronically pulsed fork vibration into rotary movement is done via two tiny jeweled fingers, called pawls. Tuning fork watches were rendered obsolete when electronic quartz watches were developed, because quartz watches were cheaper to produce and even more accurate. Electronic movements. Electronic movements have few or no moving parts, as they use the piezoelectric effect in a tiny quartz crystal to provide a stable time base for a mostly electronic movement. The crystal forms a quartz oscillator which resonates at a specific and highly stable frequency, and which can be used to accurately pace a timekeeping mechanism. For this reason, electronic watches are often called "quartz watches." Most quartz movements are primarily electronic but are geared to drive mechanical hands on the face of the watch in order to provide a traditional analog display of the time, which is still preferred by most consumers. The first prototypes of electronic quartz watches were made by the CEH research laboratory in Switzerland in 1962. The first quartz watch to enter production was the Seiko 35 SQ Astron, which appeared in 1969. Modern quartz movements are produced in very large quantities, and even the cheapest wristwatches typically have quartz movements. Whereas mechanical movements can typically be off by several seconds a day, an inexpensive quartz movement in a child's wristwatch may still be accurate to within half a second per day—ten times better than a mechanical movement.Some watchmakers combine the quartz and mechanical movements, such as the Seiko Spring Drive, introduced in 2005. Radio time signal watches are a type of electronic quartz watches which synchronizes (time transfer) its time with an external time source such as an atomic clocks, time signals from GPS navigation satellites, the German DCF77 signal in Europe, WWVB in the US, and others. Movements of this type synchronize not only the time of day but also the date, the leap-year status of the current year, and the current state of daylight saving time (on or off). Power sources. Traditional mechanical watch movements use a spiral spring called a mainspring as a power source. In "manual watches" the spring must be rewound by the user periodically by turning the watch crown. Antique pocketwatches were wound by inserting a separate key into a hole in the back of the watch and turning it. Most modern watches are designed to run 40 hours on a winding, so must be wound daily, but some run for several days and a few have 192-hour mainsprings and are wound weekly. A "self-winding" or "automatic" mechanism is one that rewinds the mainspring of a mechanical movement by the natural motions of the wearer's body. The first self-winding mechanism, for pocketwatches, was invented in 1770 by Abraham-Louis Perrelet; but the first "self-winding," or "automatic," wristwatch was the invention of a British watch repairer named John Harwood in 1923. This type of watch allows for a constant winding without special action from the wearer: it works by an eccentric weight, called a winding rotor, which rotates with the movement of the wearer's wrist. The back-and-forth motion of the winding rotor couples to a ratchet to automatically wind the mainspring. Self winding watches usually can also be wound manually so they can be kept running when not worn, or if the wearer's wrist motions don't keep the watch wound. Some electronic watches are also powered by the movement of the wearer of the watch. Kinetic powered quartz watches make use of the motion of the wearer's arm turning a rotating weight, which turns a generator to supply power to charge a rechargeable battery that runs the watch. The concept is similar to that of self-winding spring movements, except that electrical power is generated instead of mechanical spring tension. Electronic watches require electricity as a power source. Some mechanical movements and hybrid electronic-mechanical movements also require electricity. Usually the electricity is provided by a replaceable battery. The first use of electrical power in watches was as substitute for the mainspring, in order to remove the need for winding. The first electrically-powered watch, the Hamilton Electric 500, was released in 1957 by the Hamilton Watch Company of Lancaster, Pennsylvania. Watch batteries (strictly speaking cells) are specially designed for their purpose. They are very small and provide tiny amounts of power continuously for very long periods (several years or more). In most cases, replacing the battery requires a trip to a watch-repair shop or watch dealer; this is especially true for watches that are designed to be water-resistant, as special tools and procedures are required to ensure that the watch remains water-resistant after battery replacement. Silver-oxide and lithium batteries are popular today; mercury batteries, formerly quite common, are no longer used, for environmental reasons. Cheap batteries may be alkaline, of the same size as silver-oxide but providing shorter life. Rechargeable batteries are used in some solar powered watches. Solar powered watches are powered by light. A photovoltaic cell on the face (dial) of the watch converts light to electricity, which in turn is used to charge a rechargeable battery or capacitor. The movement of the watch draws its power from the rechargeable battery or capacitor. As long as the watch is regularly exposed to fairly strong light (such as sunlight), it never needs battery replacement, and some models need only a few minutes of sunlight to provide weeks of energy (as in the Citizen Eco-Drive). Some of the early solar watches of the 1970s had innovative and unique designs to accommodate the array of solar cells needed to power them (Nepro, Sicura and some models by Cristalonic, Alba, Seiko and Citizen). As the decades progressed and the efficiency of the solar cells increased while the power requirements of the movement and display decreased, solar watches began to be designed to look like other conventional watches. A rarely used power source is the temperature difference between the wearer's arm and the surrounding environment (as applied in the Citizen Eco-Drive Thermo). Analog. Traditionally, watches have displayed the time in analog form, with a numbered dial upon which are mounted at least a rotating hour hand and a longer, rotating minute hand. Many watches also incorporate a third hand that shows the current second of the current minute. Watches powered by quartz have second hands that snap every second to the next marker. Watches powered by a mechanical movement have a "sweep second hand", the name deriving from its uninterrupted smooth (sweeping) movement across the markers, although this is actually a misnomer; the hand merely moves in smaller steps, typically 1 6 of a second, corresponding to the beat of the balance wheel. All of the hands are normally mechanical, physically rotating on the dial, although a few watches have been produced with “hands” that are simulated by a liquid-crystal display. Analog display of the time is nearly universal in watches sold as jewelry or collectibles, and in these watches, the range of different styles of hands, numbers, and other aspects of the analog dial is very broad. In watches sold for timekeeping, analog display remains very popular, as many people find it easier to read than digital display; but in timekeeping watches the emphasis is on clarity and accurate reading of the time under all conditions (clearly marked digits, easily visible hands, large watch faces, etc.). They are specifically designed for the left wrist with the stem (the knob used for changing the time) on the right side of the watch; this makes it easy to change the time without removing the watch from the hand. This is the case if one is right-handed and the watch is worn on the left wrist (as is traditionally done). If one is left-handed and wears the watch on the right wrist, one has to remove the watch from the wrist to reset the time or to wind the watch. Analog watches as well as clocks are often marketed showing a display time of approximately 10:09 or 10:10. This creates a visually pleasing smile-like face on upper half of the watch. Digital displays often show a time of 12:38, where the increases in the numbers from left to right culminating in the fully-lit numerical display of the 8 also gives a positive feeling. Digital. Since the advent of electronic watches that incorporate small computers, digital displays have also been available. A digital display simply shows the time as a number, "e.g.," 12:40'" instead of a short hand pointing towards the number 12 and a long hand pointing towards the number 8 on a dial. Some watches, such as the Timex Datalink USB, feature dot matrix displays. The first digital watch, a Pulsar prototype in 1970, was invented by bulgarian Peter Petroff and developed jointly by Hamilton Watch Company and Electro-Data. John Bergey, the head of Hamilton's Pulsar division, said that he was inspired to make a digital timepiece by the then-futuristic digital clock that Hamilton themselves made for the 1968 science fiction film". On April 4, 1972 the Pulsar was finally ready, made in 18-carat gold and sold for $2,100 at retail. It had a red light-emitting diode (LED) display. Another early digital watch innovator, Roger Riehl's Synchronar Mark 1, provided an LED display and used solar cells to power the internal nicad batteries. Most watches with LED displays required that the user press a button to see the time displayed for a few seconds, because LEDs used so much power that they could not be kept operating continuously. Watches with LED displays were popular for a few years, but soon the LED displays were superseded by liquid crystal displays (LCDs), which used less battery power and were much more convenient in use, with the display always visible and no need to push a button before seeing the time. The first LCD watch with a six-digit LCD was the 1973 Seiko 06LC, although various forms of early LCD watches with a four-digit display were marketed as early as 1972 including the 1972, and the Cox Electronic Systems Quarza. Digital watches were very expensive and out of reach to the common consumer until 1975, when Texas Instruments started to mass produce LED watches inside a plastic case. These watches, which first retailed for only $20, reduced to $10 in 1976, saw Pulsar lose $6 million and the brand sold to competitors twice in only a year, eventually becoming a subsidiary of Seiko and going back to making only analogue quartz watches. From the 1980s onward, digital watch technology vastly improved. In 1982 Seiko produced a watch with a small television screen built in, and Casio produced a digital watch with a thermometer as well as another that could translate 1,500 Japanese words into English. In 1985, Casio produced the CFX-400 scientific calculator watch. In 1987 Casio produced a watch that could dial your telephone number and Citizen revealed one that would react to your voice. In 1995 Timex release a watch which allowed the wearer to download and store data from a computer to his wrist. Since their apex during the late 1980s to mid 1990s high technology fad, digital watches have "mostly" devolved into a simpler, less expensive basic time piece with little variety between models. Despite these many advances, almost all watches with digital displays are used as timekeeping watches. Expensive watches for collectors rarely have digital displays since there is little demand for them. Less craftsmanship is required to make a digital watch face and most collectors find that analog dials (especially with complications) vary in quality more than digital dials due to the details and finishing of the parts that make up the dial (thus making the differences between a cheap and expensive watch more evident). Functions. All watches provide the time of day, giving at least the hour and minute, and usually the second. Most also provide the current date, and often the day of the week as well. However, many watches also provide a great deal of information beyond the basics of time and date. Some watches include alarms. Other elaborate and more expensive watches, both pocket and wrist models, also incorporate striking mechanisms or repeater functions, so that the wearer could learn the time by the sound emanating from the watch. This announcement or striking feature is an essential characteristic of true clocks and distinguishes such watches from ordinary timepieces. This feature is available on most digital watches. A "complicated watch" has one or more functions beyond the basic function of displaying the time and the date; such a functionality is called a complication. Two popular complications are the chronograph'" complication, which is the ability of the watch movement to function as a stopwatch, and the "'moonphase'" complication, which is a display of the lunar phase. Other more expensive complications include Tourbillion, Perpetual calendar, Minute repeater, and Equation of time. A truly complicated watch has many of these complications at once (see Calibre 89 from Patek Philippe for instance). Among watch enthusiasts, complicated watches are especially collectible. Some watches include a second 12-hour display for UTC (as Pontos Grand Guichet GMT). The similar-sounding terms "'chronograph'" and "'chronometer'" are often confused, although they mean altogether different things. A chronograph has a stopwatch complication, as explained above, while a chronometer watch has a high quality mechanical or a thermo-compensated quartz movement that has been tested and certified to operate within a certain standard of accuracy by the COSC (Contrôle Officiel Suisse des Chronomètres). The concepts are different but not mutually exclusive; so a watch can be a chronograph, a chronometer, both, or neither. Fashion. Wristwatches are often appreciated as jewelry or as collectible works of art rather than just as timepieces. This has created several different markets for wristwatches, ranging from very inexpensive but accurate watches (intended for no other purpose than telling the correct time) to extremely expensive watches that serve mainly as personal adornment or as examples of high achievement in miniaturization and precision mechanical engineering. Traditionally, men's dress watches appropriate for informal, semi-formal, and formal attire are gold, thin, simple, and plain, but recent conflation of dressiness and high price has led to a belief among some that expensive rugged, complicated, or sports watches are also dressy because of their high cost. Some dress watches have a cabochon on the crown and many women's dress watches have faceted gemstones on the face, bezel, or bracelet. Many fashion and department stores offer a variety of less-expensive, trendy, "costume" watches (usually for women), many of which are similar in quality to basic quartz timepieces but which feature bolder designs. In the 1980s, the Swiss Swatch company hired graphic designers to redesign a new annual collection of non-repairable watches. Still another market is that of "geek" watches—watches that not only tell the time, but incorporate computers, satellite navigation, complications of various orders, and many other features that may be quite removed from the basic concept of timekeeping. A dual-time watch is designed for travelers, allowing them to see what time it is at home when they are elsewhere. Most companies that produce watches specialize in one or some of these markets. Companies such as Patek Philippe, Blancpain, and Jaeger-LeCoultre specialize in simple and complicated mechanical dress watches; companies such as TAG Heuer, Breitling, and Rolex specialize in rugged, reliable mechanical watches for sport and aviation use. Companies such as Casio, Timex, and Seiko specialize in watches as affordable timepieces or multifunctional computers. Computerized multi-function watches. Many computerized wristwatches have been developed, but none have had long-term sales success, because they have awkward user interfaces due to the tiny screens and buttons, and a short battery life. As miniaturized electronics became cheaper, watches have been developed containing calculators, tonometers, barometers, altimeters, video games, digital cameras, keydrives, GPS receivers and cellular phones. In the early 1980s Seiko marketed a watch with a television in it. Such watches have also had the reputation as unsightly and thus mainly geek toys. Snyper watches developed a timekeeper with a computer CPU. Several companies have however attempted to develop a computer contained in a wristwatch (see also wearable computer). For space travel. Zero gravity environment and other extreme conditions encountered by astronauts in space requires the use of specially tested watches. On April 12, 1961, Yuri Gagarin wore a Shturmanskie (a transliteration of Штурманские which actually means "navigators'") wristwatch during his historic first flight into space. The Shturmanskie was manufactured at the First Moscow Factory. Since 1964, the watches of the First Moscow Factory have been marked by a trademark "ПОЛЕТ" and "POLJOT", which means "flight" in Russian and is a tribute to the number of many space trips its watches have accomplished. In the late 1970s, Poljot launched a new chrono movement, the 3133. With a 23 jewel movement and manual winding (43 hours), it was a modified Russian version of the Swiss Valjoux 7734 of the early 1970s. Poljot 3133 were taken into space by astronauts from Russia, France, Germany and Ukraine. On the arm of Valeriy Polyakov, a Poljot 3133 chronograph movement-based watch set a space record for the longest space flight in history. During the 1960s, a large range of watches were tested for durability and precision under extreme temperature changes and vibrations. The Omega Speedmaster Professional was selected by U.S. space agencies. (For a list of NASA-certified watches, see this footnote). TAG Heuer became the first Swiss watch in space thanks to an Heuer Stopwatch, worn by John Glenn in 1962 when he piloted the Friendship 7 on the first manned U.S. orbital mission. (The company was then called "Heuer". TAG had not yet been formed in 1962.) The Breitling Navitimer Cosmonaute was designed with a 24-hour analog dial to avoid confusion between AM and PM, which are meaningless in space. It was first worn in space by U.S. astronaut Scott Carpenter on May 24, 1962 in the Aurora 7 mercury capsule. Since 1994 Fortis is the exclusive supplier for manned space missions authorized by the Russian Federal Space Agency. China National Space Administration (CNSA) astronauts wear the Fiyta spacewatches. At BaselWorld, 2008, Seiko announced the creation of the first watch ever designed specifically for a space walk. For scuba diving. Watches may be crafted to become water resistant. These watches are sometimes called diving watches when they are suitable for scuba diving or saturation diving. The International Organization for Standardization issued a standard for water resistant watches which also prohibits the term "waterproof" to be used with watches, which many countries have adopted. Water resistance is achieved by the gaskets which form a watertight seal, used in conjunction with a sealant applied on the case to help keep water out. The material of the case must also be tested in order to pass as water resistant. The watches are tested in theoretical depths, thus a watch with a 50 meter rating will be water resistant if it is stationary and under 50 meters of still water for a set amount of time. The most commonly used method for testing the water resistance is by depressurizing a small chamber containing the watch. A sensor measures the movement of the case and crystal to gauge how much pressure the watch is losing and how fast. The watch never touches water in this type of machine. Another type of machine is used for very deep measure tests, where the watch is immersed in a small container filled with water, this chamber is then submitted to the pressure the watch is supposed to withstand. In neither case is there any variation in the pressure, or is the watch submitted to that pressure for an extended period of time(normally only a couple of minutes). These are the only logical ways to test the water resistance of a watch, since if adding variations added by time spent underwater or the movement of the wearers hands would simply make this a very intricate and difficult measurement. Although confusing this is the best way of telling the customer what to expect. For normal use, the ratings must therefore be translated from the pressure the watch can withstand to take into account the extra pressure generated by motion and time spent underwater. Watches are classified by their degree of water resistance, which roughly translates to the following (1 meter =3.281 feet): Some watches use bar instead of meters, which may then be multiplied by 10 to be approximately equal to the rating based on meters. Therefore, a 10 bar watch is equivalent to a 100 meter watch. Some watches are rated in atmospheres (atm), which are roughly equivalent to bar. History. Watches evolved from portable spring driven clocks, which first appeared in the 15th century. Portable timepieces were made possible by the invention of the mainspring. Although some sources erroneously credit Nürnberg clockmaker Peter Henlein (or Henle or Hele) with inventing the mainspring around 1511, many references to 'clocks without weights' and two surviving examples show that spring powered clocks appeared in the 1400s. Henlein is also often credited with constructing the first pocketwatches, mostly because of a passage by Johann Cochläus in 1511: Peter Hele, still a young man, fashions works which even the most learned mathematicians admire. He shapes many-wheeled clocks out of small bits of iron, which run and chime the hours without weights for forty hours, whether carried at the breast or in a handbag and because he was popularized in a 19th century novel. However, many German clockmakers were creating miniature timepieces during this period, and there is no evidence Henlein was the first. Also, watches weren't widely worn in pockets until the 1600s. Clock-watches: 1500. The first timepieces to be worn, made in 16th century Europe, were transitional in size between clocks and watches. These 'clock-watches' were fastened to clothing or worn on a chain around the neck. They were heavy drum shaped cylindrical brass boxes several inches in diameter, engraved and ornamented. They had only an hour hand. The face was not covered with glass, but usually had a hinged brass cover, often decoratively pierced with grillwork so the time could be read without opening. The movement was made of iron or steel and held together with tapered pins and wedges, until screws began to be used after 1550. Many of the movements included striking or alarm mechanisms. They usually had to be wound twice a day. The shape later evolved into a rounded form; these were called "Nürnberg eggs". Still later in the century there was a trend for unusually shaped watches, and clock-watches shaped like books, animals, fruit, stars, flowers, insects, crosses, and even skulls (Death's head watches) were made. It should not be thought that the reason for wearing these early clock-watches was to tell the time. The accuracy of their verge and foliot movements was so poor, perhaps several hours per day, that they were practically useless. They were made as jewelry and novelties for the nobility, valued for their fine ornamentation, unusual shape, or intriguing mechanism, and accurate timekeeping was of very minor importance. Pocketwatches: 1600. Styles changed in the 1600s and men began to wear watches in pockets instead of as pendants (the woman's watch remained a pendant into the 20th century). This is said to have occurred in 1675 when Charles II of England introduced waistcoats. To fit in pockets, their shape evolved into the typical pocketwatch shape, rounded and flattened with no sharp edges. Glass was used to cover the face beginning around 1610. Watch fobs began to be used, the name originating from the German word "fuppe", a small pocket. The watch was wound and also set by opening the back and fitting a key to a square arbor, and turning it. The timekeeping mechanism in these early pocketwatches was the same one used in clocks, invented in the 13th century; the verge escapement which drove a foliot, a dumbbell shaped bar with weights on the ends, to oscillate back and forth. However, the mainspring introduced a source of error not present in weight-powered clocks. The force provided by a spring is not constant, but decreases as the spring unwinds. The rate of all timekeeping mechanisms is affected by changes in their drive force, but the primitive verge and foliot mechanism was especially sensitive to these changes, so early watches slowed down during their running period as the mainspring ran down. This problem, called lack of isochronism, plagued mechanical watches throughout their history. Efforts to improve the accuracy of watches prior to 1657 focused on evening out the steep torque curve of the mainspring. Two devices to do this had appeared in the first clock-watches: the "stackfreed" and the "fusee". The stackfreed, a spring-loaded cam on the mainspring shaft, added a lot of friction and was abandoned after about a century. The fusee was a much more lasting idea. A curving conical pulley with a chain wrapped around it attached to the mainspring barrel, it changed the leverage as the spring unwound, equalizing the drive force. Fusees became standard in all watches, and were used until the early 1800s. The foliot was also gradually replaced with the balance wheel, which had a higher moment of inertia for its size, allowing better timekeeping. The balance spring: 1657. A great leap forward in accuracy occurred in 1657 with the addition of the balance spring to the balance wheel by Robert Hooke and Christiaan Huygens. Prior to this, the only force limiting the back and forth motion of the balance wheel under the force of the escapement was the wheel's inertia. This caused the wheel's period to be very sensitive to the force of the mainspring. The balance spring made the balance wheel a harmonic oscillator, with a natural 'beat' resistant to disturbances. This increased watches' accuracy enormously, from perhaps several hours per day to perhaps 10 minutes per day, resulting in the addition of the minute hand to the face around 1700. The increased accuracy of the balance wheel focused attention on errors caused by other parts of the movement, igniting a two century wave of watchmaking innovation. The first thing to be improved was the escapement. The verge escapement was replaced in quality French watches by the cylinder escapement, invented by Thomas Tompion in 1695. In Britain quality watches went to the duplex escapement, invented by Jean Baptiste Dutertre in 1724. The advantage of these escapements was that they only gave the balance wheel a short push in the middle of its swing, leaving it 'detached' from the escapement to swing back and forth undisturbed during most of its cycle. Temperature compensation and chronometers: 1765. The Enlightenment view of watches as scientific instruments brought rapid advances to their mechanisms. The development during this period of accurate marine chronometers to determine longitude during sea voyages produced many technological advances that were later used in watches. It was found that a major cause of error in balance wheel timepieces was changes in elasticity of the balance spring with temperature changes. This problem was solved by the bimetallic temperature compensated balance wheel invented in 1765 by Pierre Le Roy and improved by Thomas Earnshaw. This type of balance wheel had two semicircular arms made of a bimetallic construction. If the temperature rose, the arms bent inward slightly, causing the balance wheel to rotate faster back and forth, compensating for the slowing due to the weaker balance spring. This system, which could reduce temperature induced error to a few seconds per day, gradually began to be used in watches over the next hundred years. The going barrel invented in 1760 by Jean-Antoine Lépine provided a more constant drive force over the watch's running period, and its adoption in the 1800s made the fusee obsolete. Complicated pocket chronometers and astronomical watches with many hands and functions were made during this period. Lever escapement: 1800. The lever escapement, invented by Thomas Mudge in 1759 and improved by Josiah Emery in 1785, in this century replaced other escapements until from 1900 on it was used in almost every watch made. In this escapement the escape wheel pushed on a T shaped 'lever', which was unlocked as the balance wheel swung through its center position and gave the wheel a brief push before releasing it. The advantages of the lever was that it allowed the balance wheel to swing completely free during most of its cycle; due to 'locking' and 'draw' its action was very precise; and it was self-starting, so if the balance wheel was stopped by a jar it would start again. Mass production: 1850. Watch manufacture changed from assembly in watchmaking shops to mass production with interchangeable parts, pioneered by Georges-Auguste Leschott. The railroads' stringent requirements for accurate watches to safely schedule trains drove improvements in accuracy. Temperature compensated balance wheels began to be widely used in watches during this period, as well as jewel bearings, introduced in 1702 by Nicolas Fatio de Duillier. Techniques for adjusting the balance spring for isochronism and positional errors discovered by Abraham Breguet, M. Phillips, and L. Lossier were adopted. By 1900, with these advances, the accuracy of quality watches, properly adjusted, topped out at a few seconds per day. Key winding was replaced by keyless winding, where the watch was wound by turning the crown. The pin pallet escapement, an inexpensive version of the lever escapement invented in 1876 by Georges Frederic Roskopf was used in cheap mass produced dollar watches, which allowed ordinary workers to own a watch for the first time. Better materials: 1900. During the 20th century, the mechanical design of the watch became standardized, and advances were made in better materials, tighter tolerances, and improved production methods. The bimetallic temperature compensated balance wheel was made obsolete by the discovery of low temperature coefficient alloys invar and elinvar. A balance wheel of invar with a spring of elinvar was almost unaffected by temperature changes, so it replaced the complicated temperature compensated balance. The discovery in 1903 of a process to produce artificial sapphire made jewelling cheap. Bridge construction superseded 3 4 plate construction. Wristwatches: 1920. Before World War I only women wore wristwatches, they were considered 'unmanly'. Wristwatches became fashionable as a result of their use by soldiers in WW1, who needed access to their watches while their hands were full. These first wristwatches, called 'trench watches', were made with pocketwatch movements, so they were large and bulky and had the crown at the 12 o'clock position like pocketwatches. After the war pocketwatches went out of fashion until by 1930 the ratio of wrist- to pocketwatches was 50 to 1. The first successful self-winding system was invented by John Harwood in 1923. Electric watches: 1950. The first generation electric watches came out during this period. These kept time with a balance wheel powered by a solenoid, or in a few advanced watches that foreshadowed the quartz watch, by a steel tuning fork vibrating at 360 Hz, powered by a solenoid driven by a transistor oscillator circuit. The hands were still moved mechanically by a wheel train. In mechanical watches the self winding mechanism, shockproof balance pivots, and break resistant 'white metal' mainsprings became standard. The jewel craze caused 'jewel inflation' and 100 jewel watches were made. Quartz watches: 1969. The introduction of the quartz watch in 1969 was a revolutionary improvement in watch technology. In place of a balance wheel which oscillated at 5 beats per second, it used a quartz crystal resonator which vibrated at 32,768 Hz, driven by a battery powered oscillator circuit. In place of a wheel train to add up the beats into seconds, minutes, and hours, it used digital counters. The higher Q of the resonator, along with quartz's low temperature coefficient, resulted in better accuracy than the best mechanical watches, while the elimination of all moving parts made the watch more shock-resistant and eliminated the need for periodic cleaning. Accuracy increased with the frequency of the crystal used, but so did power consumption. So the first generation watches had frequencies of a few kilohertz, limiting their accuracy. The power saving use of CMOS logic and LCD displays in the 2nd generation increased battery life and allowed the crystal frequency to be increased to 32,768 Hz resulting in accuracy of 5-10 seconds per month. By the 1980s, quartz watches had taken over most of the watch market from the mechanical watch industry.