ratio of word probabilities predicted from brain for telephone and corn

close this window

telephone

corn

top 10 words in brain distribution (in article):
century design style modern allow american time popular english begin
top 10 words in brain distribution (in article):
color drink beer water produce green pipe beverage species type
top 10 words in brain distribution (not in article):
wear horse woman clothe saddle material dress fashion ride type
top 10 words in brain distribution (not in article):
light lamp wine bottle valve wear horse bulb cocacolum beam
times more probable under telephone 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under corn
(words not in the model)
The telephone'" (from the, "tēle", "far" and φωνή, "phōnē", "voice") is a telecommunications device that is used to transmit and receive electronically or digitally encoded sound (most commonly speech) between two or more people conversing. It is one of the most common household appliances in the developed world today. Most telephones operate through transmission of electric signals over a complex telephone network which allows almost any phone user to communicate with almost any other user. Graphic symbols used to designate telephone service or phone-related information in print, signs, and other media include,, and. Basic principle. A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active state or "off hook" by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator that produces DTMF tones which are sent to the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (generally over 100 volts AC) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call. When a landline phone is inactive or "on hook", its alerting device is connected across the line through a capacitor, which prevents DC current from flowing through the line. The circuitry at the telephone exchange detects the absence of DC current flow and thus that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, the ringing signal transmitted by the telephone exchange activates the alerting device on the line. When the called party picks up the handset, the switchhook disconnects the alerting device and connects the audio circuitry to the line. The resulting low resistance now causes DC current to flow through this line, confirming that the called phone is now active. Both phones being active and connected through the exchange, the parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call. Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances. In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter. A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components. History. Credit for inventing the electric telephone remains in dispute. As with other great inventions such as radio, television, light bulb, and computer, there were several inventors who did pioneer experimental work on voice transmission over a wire and improved on each other's ideas. Innocenzo Manzetti, Antonio Meucci, Johann Philipp Reis, Elisha Gray, Alexander Graham Bell, and Thomas Edison, among others, have all been credited with pioneer work on the telephone. A Hungarian engineer, Tivadar Puskás invented the Telephone exchange in 1876. The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive. Early commercial instruments. Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" -their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument. Early telephones were locally powered, using either a dynamic transmitter or by the powering of a transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Early telephones used a single wire for the subscriber's line, with ground return used to complete the circuit (as used in telegraphs). The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive. At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential. Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire, and later over the same wire, but with a condenser (capacitor) in series with the bell coil to allow the AC ringer signal through while still blocking DC (keeping the phone "on hook"). Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking. Rural and other telephones that were not on a common battery exchange had a magneto or hand-cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator. In the 1890s a new smaller style of telephone was introduced, packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery and magneto were in a separate "bell box." In phones connected to common battery exchanges, the bell box was installed under a desk, or other out of the way place, since it did not need a battery or magneto. Cradle designs were also used at this time, having a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular. Disadvantages of single wire operation such as crosstalk and hum from nearby AC power wires had already led to the use of twisted pairs and, for long distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long distance calls from their own telephones but made an appointment to use a special sound proofed long distance telephone booth furnished with the latest technology. What turned out to be the most popular and longest lasting physical style of telephone was introduced in the early 20th century, including Bell's Model 102. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use sat in a cradle in the base unit. The of the Model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure. The dial switch in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1-10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle. After the 1930s, the base also enclosed the bell and induction coil, obviating the old separate bell box. Power was supplied to each subscriber line by central office batteries instead of a local battery, which required periodic service. For the next half century, the network behind the telephone became progressively larger and much more efficient, but after the dial was added the instrument itself changed little until touch tone replaced the dial in the 1960s. Digital telephony. The Public Switched Telephone Network (PSTN) has gradually evolved towards digital telephony which has improved the capacity and quality of the network. End-to-end analog telephone networks were first modified in the early 1960s by upgrading transmission networks with T1 carrier systems. Later technologies such as SONET and fiber optic transmission methods further advanced digital transmission. Although analog carrier systems existed, digital transmission made it possible to significantly increase the number of channels multiplexed on a single transmission medium. While today the end instrument remains analog, the analog signals reaching the aggregation point (Serving Area Interface (SAI) or the central office (CO)) are typically converted to digital signals. Digital loop carriers (DLC) are often used, placing the digital network ever closer to the customer premises, relegating the analog local loop to legacy status. IP telephony. Internet Protocol (IP) telephony (also known as Voice over Internet Protocol, VoIP), is a disruptive technology that is rapidly gaining ground against traditional telephone network technologies. As of January 2005, up to 10% of telephone subscribers in Japan and South Korea have switched to this digital telephone service. A January 2005 Newsweek article suggested that Internet telephony may be "the next big thing." As of 2006 many VoIP companies offer service to consumers and businesses. IP telephony uses an Internet connection and hardware IP Phones or softphones installed on personal computers to transmit conversations encoded as data packets. In addition to replacing POTS (plain old telephone service), IP telephony services are also competing with mobile phone services by offering free or lower cost connections via WiFi hotspots. VoIP is also used on private networks which may or may not have a connection to the global telephone network. Usage. By the end of 2006, there were a total of nearly 4 billion mobile and fixed-line subscribers and over 1 billion Internet users worldwide. This included 1.27 billion fixed-line subscribers and 2.68 billion mobile subscribers. Telephone operating companies. In some countries, many telephone operating companies (commonly abbreviated to "telco" in American English) are in competition to provide telephone services. Some of them are included in the following list. However, the list only includes facilities based providers and not companies which lease services from facilities based providers in order to serve their customers. Maize'" ("Zea mays" L. ssp. "mays"), known as corn'" in some countries, is a cereal grain domesticated in Mesoamerica and subsequently spread throughout the American continents. After European contact with the Americas in the late 15th and early 16th century, maize spread to the rest of the world. Maize is the most widely grown crop in the Americas (332 million tonnes annually in the United States alone). Hybrid maize, due to its high grain yield as a result of heterosis ("hybrid vigor"), is preferred by farmers over conventional varieties. While some maize varieties grow up to 7 metres (23 ft) tall, most commercially grown maize has been bred for a standardized height of 2.5 metres (8 ft). Sweet corn is usually shorter than field-corn varieties. Naming conventions. The term "maize" derives from the Spanish form ("maíz") of the indigenous Taino term for the plant, and was the form most commonly heard in the United Kingdom. In the United States, Canada (maïs in French speaking Canadian regions) and Australia, the usual term is "corn", which originally referred to any grain, but which now refers exclusively to maize, having been shortened from the form "Indian corn" (which currently, at least in the U.S. & Canada, is often used to refer specifically to multi-colored "field corn" cultivars). Physiology. Maize stems superficially resemble bamboo canes and the internodes can reach 20–30 centimetres (8–12 in). Maize has a very distinct growth form; the lower leaves being like broad flags, 50–100 centimetres long and 5–10 centimetres wide (2–4 ft by 2–4 in); the stems are erect, conventionally 2–3 metres (7–10 ft) in height, with many nodes, casting off flag-leaves at every node. Under these leaves and close to the stem grow the ears. They grow about 3 milimetres a day. The ears are female inflorescences, tightly covered over by several layers of leaves, and so closed-in by them to the stem that they do not show themselves easily until the emergence of the pale yellow silks from the leaf whorl at the end of the ear. The silks are elongated stigmas that look like tufts of hair, at first green, and later red or yellow. Plantings for silage are even denser, and achieve an even lower percentage of ears and more plant matter. Certain varieties of maize have been bred to produce many additional developed ears, and these are the source of the "baby corn" that is used as a vegetable in Asian cuisine. Maize is a facultative long-night plant and flowers in a certain number of growing degree days >50 °F (10 °C) in the environment to which it is adapted. The magnitude of the influence that long nights have on the number of days that must pass before maize flowers is genetically prescribed and regulated by the phytochrome system. Photoperiodicity can be eccentric in tropical cultivars, while the long days characteristic of higher latitudes allow the plants to grow so tall that they do not have enough time to produce seed before being killed by frost. These attributes, however, may prove useful in using tropical maize for biofuels. The apex of the stem ends in the tassel, an inflorescence of male flowers. Each silk may become pollinated to produce one kernel of corn. Young ears can be consumed raw, with the cob and silk, but as the plant matures (usually during the summer months) the cob becomes tougher and the silk dries to inedibility. By the end of the growing season, the kernels dry out and become difficult to chew without cooking them tender first in boiling water. Modern farming techniques in developed countries usually rely on dense planting, which produces on average only about 0.9 ears per stalk because it stresses the plants. The kernel of corn has a pericarp of the fruit fused with the seed coat, typical of the grasses. It is close to a multiple fruit in structure, except that the individual fruits (the kernels) never fuse into a single mass. The grains are about the size of peas, and adhere in regular rows round a white pithy substance, which forms the ear. An ear contains from 200 to 400 kernels, and is from 10–25 centimetres (4–10 inches) in length. They are of various colors: blackish, bluish-gray, red, white and yellow. When ground into flour, maize yields more flour, with much less bran, than wheat does. However, it lacks the protein gluten of wheat and, therefore, makes baked goods with poor rising capability and coherence. A genetic variation that accumulates more sugar and less starch in the ear is consumed as a vegetable and is called sweet corn. Immature maize shoots accumulate a powerful antibiotic substance, DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one). DIMBOA is a member of a group of hydroxamic acids (also known as benzoxazinoids) that serve as a natural defense against a wide range of pests including insects, pathogenic fungi and bacteria. DIMBOA is also found in related grasses, particularly wheat. A maize mutant (bx) lacking DIMBOA is highly susceptible to be attacked by aphids and fungi. DIMBOA is also responsible for the relative resistance of immature maize to the European corn borer (family Crambidae). As maize matures, DIMBOA levels and resistance to the corn borer decline. Due to its shallow roots of only one to two inches deep, maize is susceptible to droughts, intolerant of nutrient-deficient soils, and prone to be uprooted by severe winds. Allergy. Maize contains lipid transfer protein, an undigestable protein which survives cooking. This protein has been linked to a rare and understudied allergy to maize in humans. The allergic reaction can cause skin rash, swelling or itching of mucus membranes, diarrhoea, vomiting, asthma and, in severe cases, anaphylactic shock. It has been noted that those with corn allergy almost always have peach allergy as well. It is unclear how common this allergy is in the general populace. Genetics. Many forms of maize are used for food, sometimes classified as various subspecies: This system has been replaced (though not entirely displaced) over the last 60 years by multi-variable classifications based on ever more data. Agronomic data were supplemented by botanical traits for a robust initial classification, then genetic, cytological, protein and DNA evidence was added. Now the categories are forms (little used), races, racial complexes, and recently branches. Maize has 10 chromosomes (n=10). The combined length of the chromosomes is 1500 cM. Some of the maize chromosomes have what are known as "chromosomal knobs": highly repetitive heterochromatic domains that stain darkly. Individual knobs are polymorphic among strains of both maize and teosinte. Barbara McClintock used these knob markers to prove her transposon theory of "jumping genes", for which she won the 1983 Nobel Prize in Physiology or Medicine. Maize is still an important model organism for genetics and developmental biology today. There is a stock center of maize mutants, "The Maize Genetics Cooperation Stock Center", funded by the USDA Agricultural Research Service and located in the Department of Crop Sciences at the University of Illinois at Urbana-Champaign. The total collection has nearly 80,000 samples. The bulk of the collection consists of several hundred named genes, plus additional gene combinations and other heritable variants. There are about 1000 chromosomal aberrations (e.g., translocations and inversions) and stocks with abnormal chromosome numbers (e.g., tetraploids). Genetic data describing the maize mutant stocks as well as myriad other data about maize genetics can be accessed at MaizeGDB, the Maize Genetics and Genomics Database. In 2005, the U.S. National Science Foundation (NSF), Department of Agriculture (USDA) and the Department of Energy (DOE) formed a consortium to sequence the maize genome. The resulting DNA sequence data will be deposited immediately into GenBank, a public repository for genome-sequence data. Sequencing the corn genome has been considered difficult because of its large size and complex genetic arrangements. The genome has 50,000–60,000 genes scattered among the 2.5 billion bases—molecules that form DNA—that make up its 10 chromosomes. (By comparison, the human genome contains about 2.9 billion bases and 26,000 genes.) On February 26, 2008, researchers announced that they had sequenced the entire genome of maize. Origin. There are several theories about the specific origin of maize in Mesoamerica: The first model was proposed by Nobel Prize winner George Beadle in 1939. Though it has experimental support, it has not explained a number of problems, among them: The domestication of maize is of particular interest to researchers — archaeologists, geneticists, ethnobotanists, geographers, etc. The process is thought by some to have started 7,500 to 12,000 years ago (corrected for solar variations). Recent genetic evidence suggests that maize domestication occurred 9,000 years ago in central Mexico, perhaps in the highlands between Oaxaca and Jalisco. The crop wild relative teosinte most similar to modern maize grows in the area of the Balsas River. Archaeological remains of early maize ears, found at Guila Naquitz Cave in the Oaxaca Valley, date back roughly 6,250 years (corrected; 3450 BC, uncorrected); the oldest ears from caves near Tehuacan, Puebla, date ca. 2750 BC. Little change occurred in ear form until ca. 1100 BC when great changes appeared in ears from Mexican caves: maize diversity rapidly increased and archaeological teosinte was first deposited. Perhaps as early as 1500 BC, maize began to spread widely and rapidly. As it was introduced to new cultures, new uses were developed and new varieties selected to better serve in those preparations. Maize was the staple food, or a major staple, of most the pre-Columbian North American, Mesoamerican, South American, and Caribbean cultures. The Mesoamerican civilization was strengthened upon the field crop of maize; through harvesting it, its religious and spiritual importance and how it impacted their diet. Maize formed the Mesoamerican people’s identity. During the 1st millennium AD, maize cultivation spread from Mexico into the U.S. Southwest and a millennium later into U.S. Northeast and southeastern Canada, transforming the landscape as Native Americans cleared large forest and grassland areas for the new crop. It is unknown what precipitated its domestication, because the edible portion of the wild variety is too small and hard to obtain to be eaten directly, as each kernel is enclosed in a very hard bi-valve shell. However, George Beadle demonstrated that the kernels of teosinte are readily "popped" for human consumption, like modern popcorn. Some have argued that it would have taken too many generations of selective breeding in order to produce large compressed ears for efficient cultivation. However, studies of the hybrids readily made by intercrossing teosinte and modern maize suggest that this objection is not well founded. In 2005, research by the USDA Forest Service indicated that the rise in maize cultivation 500 to 1,000 years ago in what is now the southeastern United States contributed to the decline of freshwater mussels, which are very sensitive to environmental changes. Production quantities and methods. Maize is widely cultivated throughout the world, and a greater weight of maize is produced each year than any other grain. While the United States produces almost half of the world's harvest(~42.5%), other top producing countries include China, Brazil, Mexico, Argentina, India and France. Worldwide production was around 800 million tonnes in 2007—just slightly more than rice (~650 million tonnes) or wheat (~600 million tonnes). In 2007, over 150 million hectares of maize were planted worldwide, with a yield of 4970.9 kilogram hectare. Because it is cold-intolerant, in the temperate zones maize must be planted in the spring. Its root system is generally shallow, so the plant is dependent on soil moisture. As a C4 plant (a plant that uses C4 carbon fixation), maize is a considerably more water-efficient crop than C3 plants (plants that use C3 carbon fixation) like the small grains, alfalfa and soybeans. Maize is most sensitive to drought at the time of silk emergence, when the flowers are ready for pollination. In the United States, a good harvest was traditionally predicted if the corn was "knee-high by the Fourth of July," although modern hybrids generally exceed this growth rate. Maize used for silage is harvested while the plant is green and the fruit immature. Sweet corn is harvested in the "milk stage," after pollination but before starch has formed, between late summer and early to mid-autumn. Field corn is left in the field very late in the autumn in order to thoroughly dry the grain, and may, in fact, sometimes not be harvested until winter or even early spring. The importance of sufficient soil moisture is shown in many parts of Africa, where periodic drought regularly causes famine by causing maize crop failure. Maize was planted by the Native Americans in hills, in a complex system known to some as the Three Sisters: beans used the corn plant for support and in turn provided nitrogen from nitrogen-fixing bacteria which live on the roots of beans and other legumes; and squashes provided ground cover to stop weeds and inhibit evaporation by providing shade over the soil. This method was replaced by single species hill planting where each hill 60–120 cm (2–4 ft) apart was planted with 3 or 4 seeds, a method still used by home gardeners. A later technique was "checked corn" where hills were placed 40 inches apart in each direction, allowing cultivators to run through the field in two directions. In more arid lands this was altered and seeds were planted in the bottom of 10–12 cm (4–5 in) deep furrows to collect water. Modern technique plants maize in rows which allows for cultivation while the plant is young, although the hill technique is still used in the cornfields of some Native American reservations. In North America, fields are often planted in a two-crop rotation with a nitrogen-fixing crop, often alfalfa in cooler climates and soybeans in regions with longer summers. Sometimes a third crop, winter wheat, is added to the rotation. Fields are usually ploughed each year, although no-till farming is increasing in use. Many of the maize varieties grown in the United States and Canada are hybrids. Over half of the corn area planted in the United States has been genetically modified using biotechnology to express agronomic traits such as pest resistance or herbicide resistance. Before about World War II, most maize in North America was harvested by hand (as it still is in most of the other countries where it is grown). This often involved large numbers of workers and associated social events. Some one- and two-row mechanical pickers were in use but the corn combine was not adopted until after the War. By hand or mechanical picker, the entire ear is harvested which then requires a separate operation of a corn sheller to remove the kernels from the ear. Whole ears of corn were often stored in "corn cribs" and these whole ears are a sufficient form for some livestock feeding use. Few modern farms store maize in this manner. Most harvest the grain from the field and store it in bins. The combine with a corn head (with points and snap rolls instead of a reel) does not cut the stalk; it simply pulls the stalk down. The stalk continues downward and is crumpled in to a mangled pile on the ground. The ear of corn is too large to pass through a slit in a plate and the snap rolls pull the ear of corn from the stalk so that only the ear and husk enter the machinery. The combine separates out the husk and the cob, keeping only the kernels. Pellagra. When maize was first introduced into other farming systems than those used by traditional native-American peoples, it was generally welcomed with enthusiasm for its productivity. However, a widespread problem of malnutrition soon arose wherever maize was introduced as a staple. This was a mystery since these types of malnutrition were not normally seen among the indigenous Americans, to whom Maize was the principal staple food. It was eventually discovered that the indigenous Americans learned long ago to add alkali—in the form of ashes among North Americans and lime (calcium carbonate) among Mesoamericans—to corn meal, which liberates the B-vitamin niacin, the lack of which was the underlying cause of the condition known as pellagra. This alkali process is known by its Nahuatl (Aztec)-derived name: nixtamalization. Besides the lack of niacin, pellagra was also characterized by protein deficiency, a result of the inherent lack of two key amino acids in pre-modern maize, lysine and tryptophan. Nixtamalisation was also found to increase the lysine and tryptophan content of maize to some extent, but more importantly, the indigenous Americans had learned long ago to balance their consumption of maize with beans and other protein sources such as amaranth and chia, as well as meat and fish, in order to acquire the complete range of amino acids for normal protein synthesis. Since maize had been introduced into the diet of non-indigenous Americans without the necessary cultural knowledge acquired over thousands of years in the Americas, the reliance on maize in other cultures was often tragic. In the late 19th century pellagra reached endemic proportions in parts of the deep southern U.S., as medical researchers debated two theories for its origin: the deficiency theory (eventually shown to be true) posited that pellagra was due to a deficiency of some nutrient, and the germ theory posited that pellagra was caused by a germ transmitted by stable flies. In 1914 the U.S. government officially endorsed the germ theory of pellagra, but rescinded this endorsement several years later as evidence grew against it. By the mid-1920s the deficiency theory of pellagra was becoming scientific consensus, and the theory was proved in 1932 when niacin deficiency was determined to be the cause of the illness. Once alkali processing and dietary variety was understood and applied, pellagra disappeared. The development of high lysine maize and the promotion of a more balanced diet has also contributed to its demise. Insect pests. The susceptibility of maize to the European corn borer, and the resulting large crop losses, led to the development of transgenic expressing the "Bacillus thuringiensis" toxin. "Bt corn" is widely grown in the United States and has been approved for release in Europe. Food. Corn and cornmeal (corn flour) constitutes a staple food in many regions of the world. Corn meal is made into a thick porridge in many cultures: from the polenta of Italy, the angu of Brazil, the mămăligă of Romania, to mush in the U.S. or the food called sadza, nshima, ugali, tuwan-masara and mealie pap in Africa. Corn meal is also used as a replacement for wheat flour, to make cornbread and other baked products. Masa (cornmeal treated with lime water) is the main ingredient for tortillas, atole and many other dishes of Mexican food. Popcorn is kernels of certain varieties that explode when heated, forming fluffy pieces that are eaten as a snack. Chicha and "chicha morada"(purple chicha) are drinks made usually from particular types of maize. The first one is fermented and alcoholic, the second one is a soft drink commonly drunk in Peru Corn flakes are a common breakfast staple in the United States, and are increasingly popular all over the world. Maize can also be prepared as hominy, in which the kernels are soaked with lye; or grits, which are coarsely ground hominy. These are commonly eaten in the Southeastern United States, foods handed down from Native Americans. The Brazilian dessert canjica is made by boiling maize kernels in sweetened milk. Roasted dried corn cobs with semi-hardened kernels, coated with a seasoning mixture of fried chopped spring onions with salt added to the oil, is a popular snack food in Vietnam. Maize can also be harvested and consumed in the unripe state, when the kernels are fully grown but still soft. Unripe corn must usually be cooked to become palatable; this may be done by simply boiling or roasting the whole ears and eating the kernels right off the cob. Such corn on the cob is a common dish in the United States, United Kingdom and some parts of South America, but virtually unheard of in some European countries. The cooked unripe kernels may also be shaved off the cob and served as a vegetable in side dishes, salads, garnishes, etc. Alternatively, the raw unripe kernels may also be grated off the cobs and processed into a variety of cooked dishes, such as corn purée, tamales, pamonhas, curau, cakes, ice creams, etc. Sweetcorn, a genetic variety that is high in sugars and low in starch, is usually consumed in the unripe state. Maize is a major source of starch, a major ingredient in home cooking and in many industrialized food products. It is also a major source of cooking oil (corn oil) and of corn gluten. Maize starch can be hydrolyzed and enzymatically treated to produce syrups, particularly high fructose corn syrup, a sweetener; and also fermented and distilled to produce grain alcohol. Grain alcohol from maize is traditionally the source of bourbon whiskey. Maize is used to make chicha, a fermented beverage of Central and South America; and sometimes as the starch source for beer. In the United States and Canada maize is also widely grown to feed for livestock, as forage, silage (made by fermentation of chopped green cornstalks), or grain. Corn meal is also a significant ingredient of some commercial animal food products, such as dog food. Maize is also used as a fish bait, called "dough balls". It is particularly popular in Europe for coarse fishing. Chemicals and medicines. Starch from maize can also be made into plastics, fabrics, adhesives, and many other chemical products. Stigmas from female corn flowers, known popularly as corn silk, are sold as herbal supplements. The corn steep liquor, a plentiful watery byproduct of maize wet milling process, is widely used in the biochemical industry and research as a culture medium to grow many kinds of microorganisms. Biofuel. "Feed corn" is being used increasingly for heating; specialized corn stoves (similar to wood stoves) are available and use either feed corn or wood pellets to generate heat. Corncobs are also used as a biomass fuel source. Maize is relatively cheap and home-heating furnaces have been developed which use maize kernels as a fuel. They feature a large hopper that feeds the uniformly sized corn kernels (or wood pellets or cherry pits) into the fire. Maize is increasingly used as a biomass fuel, such as ethanol, which as researchers search for innovative ways to reduce fuel costs, has unintentionally caused a rapid rise in food costs. This has led to the 2007 harvest being one of the most profitable corn crops in modern history for farmers. Maize is widely used in Germany as a feedstock for biogas plants. Here the maize is harvested, shredded then placed in silage clamps from which it is fed into the biogas plants. A biomass gasification power plant in Strem near Güssing, Burgenland, Austria was begun in 2005. Research is being done to make diesel out of the biogas by the Fischer Tropsch method. Increasingly ethanol is being used at low concentrations (10% or less) as an additive in gasoline (gasohol) for motor fuels to increase the octane rating, lower pollutants, and reduce petroleum use (what is nowadays also known as "biofuels" and has been generating an intense debate regarding the human beings' necessity of new sources of energy, on the one hand, and the need to maintain, in regions such as Latin America, the food habits and culture which has been the essence of civilizations such as the one originated in Mesoamerica; the entry, January 2008, of maize among the commercial agreements of NAFTA has increased this debate, considering the bad labor conditions of workers in the fields, and mainly the fact that NAFTA "opened the doors to the import of corn from the United States, where the farmers who grow it receive multi-million dollar subsidies and other government supports. According to OXFAM UK, after NAFTA went into effect, the price of maize in Mexico fell 70% between 1994 and 2001. The number of farm jobs dropped as well: from 8.1 million in 1993 to 6.8 million in 2002. Many of those who found themselves without work were small-scale maize growers."). However, introduction in the northern latitudes of the U.S. of, and not for human or animal consumption, may potentially alleviate this. As a result of the U.S. federal government announcing its production target of 35 billion gallons of biofuels by 2017, ethanol production will grow to 7 billion gallons by 2010, up from 4.5 billion in 2006, boosting ethanol's share of corn demand in the U.S. from 22.6 percent to 36.1 percent. Ornamental and other uses. Some forms of the plant are occasionally grown for ornamental use in the garden. For this purpose, variegated and colored leaf forms as well as those with colorful ears are used. Additionally, size-superlative varieties, having reached 31 ft (9.4m) tall, or with ears 24 inches (60 cm) long, have been popular for at least a century. Corncobs can be hollowed out and treated to make inexpensive smoking pipes, first manufactured in the United States in 1869. An unusual use for maize is to create a "maize maze" as a tourist attraction. This is a maze cut into a field of maize. The idea of a maize maze was introduced by Adrian Fisher, one of the most prolific designers of modern mazes, with The American Maze Company who created a maze in Pennsylvania in 1993. Traditional mazes are most commonly grown using yew hedges, but these take several years to mature. The rapid growth of a field of maize allows a maze to be laid out using GPS at the start of a growing season and for the maize to grow tall enough to obstruct a visitor's line of sight by the start of the summer. In Canada and the U.S., these are called "corn mazes" and are popular in many farming communities. Corn kernels can be used in place of sand in a sandbox-like enclosure for children's play. Fodder. Maize makes a greater quantity of epigeous mass than other cereal plants, so can be used for fodder. Digestibility and palatability are higher when ensiled and fermented, rather than dried. In art. Maize has been an essential crop in the Andes since the pre-Columbian Era. The Moche culture from Northern Peru made ceramics from earth, water, and fire. This pottery was a sacred substance, formed in significant shapes and used to represent important themes. Maize represented anthropomorphically as well as naturally. In the United States, maize itself is sometimes used for temporary architectural detailing when the intent is to celebrate local agricultural productivity and culture. A well-known example of this use is the Corn Palace in Mitchell, South Dakota, which utilizes cobs of colored maize to implement a design that is recycled annually. External links. Food  |  List of fruits  |  List of vegetables