ratio of word probabilities predicted from brain for horse and chair

close this window

horse

chair

top 10 words in brain distribution (in article):
wear horse record design time drive type animal allow product
top 10 words in brain distribution (in article):
material wood design woman type form time size people century
top 10 words in brain distribution (not in article):
card service company information power woman datum clothe wheel user
top 10 words in brain distribution (not in article):
light drink lamp love build paint sexual wine beer wall
times more probable under horse 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chair
(words not in the model)
The horse'" ("Equus ferus caballus") is a hoofed (ungulate) mammal, a subspecies of one of seven extant species of the family Equidae. The horse has evolved over the past 45 to 55 million years from a small multi-toed creature into the large, single-toed animal of today. Humans began to domesticate horses around 4000 BC, and their domestication is believed to have been widespread by 3000 BC; by 2000 BC the use of domesticated horses had spread throughout the Eurasian continent. Although most horses today are domesticated, there are still endangered populations of the Przewalski's Horse, the only remaining true wild horse, as well as more common feral horses which live in the wild but are descended from domesticated ancestors. There is an extensive, specialized vocabulary used to describe equine-related concepts, covering everything from anatomy to life stages, size, colors, markings, breeds, locomotion, and behavior. Horses are anatomically designed to use speed to escape predators, and have a well-developed sense of balance and a strong fight-or-flight instinct. Related to this need to flee from predators in the wild is an unusual trait: horses are able to sleep both standing up and lying down. Female horses, called mares, carry their young for approximately 11 months, and a young horse, called a foal, can stand and run shortly following birth. Most domesticated horses begin training under saddle or in harness between the ages of two and four. They reach full adult development by age five, and have an average lifespan of between 25 and 30 years. Horse breeds are loosely divided into three categories based on general temperament: spirited "hot bloods" with speed and endurance; "cold bloods," such as draft horses and some ponies, suitable for slow, heavy work; and "warmbloods," developed from crosses between hot bloods and cold bloods, often focusing on creating breeds for specific riding purposes, particularly in Europe. There are over 300 breeds of horses in the world today, developed for many different uses. Horses and humans interact in many ways, not only in a wide variety of sport competitions and non-competitive recreational pursuits, but also in working activities including police work, agriculture, entertainment, assisted learning and therapy. Horses were historically used in warfare. A wide variety of riding and driving techniques have been developed, using many different styles of equipment and methods of control. Many products are derived from horses, including meat, milk, hide, hair, bone, and pharmaceuticals extracted from the urine of pregnant mares. Humans provide domesticated horses with food, water and shelter, as well as attention from specialists such as veterinarians and farriers. Biology. Horse anatomy is described by a large number of specific terms, as illustrated by the chart to the right. Specific terms also describe various ages, colors and breeds. Age. Depending on breed, management and environment, the domestic horse today has a life expectancy of 25 to 30 years. It is uncommon, but a few animals live into their 40s and, occasionally, beyond. The oldest verifiable record was "Old Billy," a 19th-century horse that lived to the age of 62. In modern times, Sugar Puff, who had been listed in the Guinness Book of World Records as the world's oldest living pony, died in 2007, aged 56. Regardless of a horse's actual birth date, for most competition purposes an animal is considered a year older on January 1 of each year in the northern hemisphere and August 1 in the southern hemisphere. The exception is in endurance riding, where the minimum age to compete is based on the animal's calendar age. A very rough estimate of a horse's age can be made from looking at its teeth. The following terminology is used to describe horses of various ages: In horse racing, the definitions of colt, filly, mare, and stallion may differ from those given above. In the UK, Thoroughbred horse racing defines a colt as a male less than five years old, and a filly as a female less than five years old. In the USA, both Thoroughbred racing and harness racing defines colts and fillies as four years old and younger. Size. The English-speaking world measures the height of horses in hands, abbreviated "h" or "hh," for "hands high," measured at the highest point of an animal's withers, where the neck meets the back, chosen as a stable point of the anatomy, unlike the head or neck, which move up and down; one hand is. Intermediate heights are defined by hands and inches, rounding to the lower measurement in hands, followed by a decimal point and the number of additional inches between 1 and 3. Thus a horse described as "15.2 h," is 15 hands, 2 inches in height. The size of horses varies by breed, but can also be influenced by nutrition. The general rule for cutoff in height between what is considered a horse and a pony at maturity is 14.2 hands. An animal 14.2 h or over is usually considered to be a horse and one less than 14.2 h a pony. However, there are exceptions to the general rule. Some breeds which typically produce individuals both under and over 14.2 h are considered horses regardless of their height. Conversely, some pony breeds may have features in common with horses, and individual animals may occasionally mature at over 14.2 h, but are still considered to be ponies. The distinction between a horse and pony is not simply a difference in height, but takes account of other aspects of "phenotype" or appearance, such as conformation and temperament. Ponies often exhibit thicker manes, tails and overall coat. They also have proportionally shorter legs, wider barrels, heavier bone, shorter and thicker necks, and short heads with broad foreheads. They often have calmer temperaments than horses and also a high level of equine intelligence that may or may not be used to cooperate with human handlers. In fact, small size, by itself, is sometimes not a factor at all. While the Shetland pony stands on average 10 hands high, the Falabella and other miniature horses, which can be no taller than, the size of a medium-sized dog, are classified by their respective registries as very small horses rather than as ponies. Light riding horses such as Arabians, Morgans, or Quarter Horses usually range in height from 14 to 16 hands and can weigh from. Larger riding horses such as Thoroughbreds, American Saddlebreds or Warmbloods usually start at about 15.2 hands and often are as tall as 17 hands, weighing from. Heavy or draft horses such as the Clydesdale, Belgian, Percheron, and Shire are usually at least 16 to 18 hands high and can weigh from about. The largest horse in recorded history was probably a Shire horse named Sampson, who lived during the late 1800s. He stood 21.2½ hands high, and his peak weight was estimated at. The current record holder for the world's smallest horse is Thumbelina, a fully mature miniature horse affected by dwarfism. She is tall and weighs. Colors and markings. Horses exhibit a diverse array of coat colors and distinctive markings, described with a specialized vocabulary. Often, a horse is classified first by its coat color, before breed or sex. Flashy or unusual colors are sometimes very popular, as are horses with particularly attractive markings. Horses of the same color may be distinguished from one another by their markings. The genetics that create many horse coat colors have been identified, although research continues on specific genes and mutations that result in specific color traits. Essentially, all horse colors begin with a genetic base of "red" (chestnut) or "black," with the addition of alleles for spotting, graying, suppression or dilution of color, or other effects acting upon the base colors to create the dozens of possible coat colors found in horses. Horses which are light in color are often misnamed as being "white" horses. A horse that looks pure white is, in most cases, actually a middle-aged or older gray. Grays have black skin underneath their white hair coat (with the exception of small amounts of pink skin under white markings). The only horses properly called white are those with pink skin under a white hair coat, a fairly rare occurrence. There are no truly albino horses, with pink skin and red eyes, as albinism is a lethal condition in horses. Reproduction and development. Pregnancy lasts for approximately 335–340 days and usually results in one foal. Twins are very rare. Colts are carried on average about 4 days longer than fillies. Horses are a precocial species, and foals are capable of standing and running within a short time following birth. Horses, particularly colts, may sometimes be physically capable of reproduction at about 18 months. In practice, individuals are rarely allowed to breed before the age of three, especially females. Horses four years old are considered mature, although the skeleton normally continues to develop until the age of six; the precise time of completion of development also depends on the horse's size, breed, gender, and the quality of care provided by its owner. Also, if the horse is larger, its bones are larger; therefore, not only do the bones take longer to actually form bone tissue, but the epiphyseal plates are also larger and take longer to convert from cartilage to bone. These plates convert after the other parts of the bones, but are crucial to development. Depending on maturity, breed, and the tasks expected, young horses are usually put under saddle and trained to be ridden between the ages of two and four. Although Thoroughbred race horses are put on the track at as young as two years old in some countries, horses specifically bred for sports such as dressage are generally not entered into top-level competition until they are a minimum of four years old, because their bones and muscles are not solidly developed, nor is their advanced training complete. For endurance riding competition, horses are not deemed mature enough to compete until they are a full 60 calendar months (5 years) old. Skeletal system. Horses have a skeleton that averages 205 bones. A significant difference between the horse skeleton, compared to that of a human, is the lack of a collarbone—the horse's front limb system is attached to the spinal column by a powerful set of muscles, tendons and ligaments that attach the shoulder blade to the torso. The horse's legs and hooves are also unique structures. Their leg bones are proportioned differently from those of a human. For example, the body part that is called a horse's "knee" is actually made up of the carpal bones that correspond to the human wrist. Similarly, the hock, contains the bones equivalent to those in the human ankle and heel. The lower leg bones of a horse correspond to the bones of the human hand or foot, and the fetlock (incorrectly called the "ankle") is actually the proximal sesamoid bones between the cannon bones (a single equivalent to the human metacarpal or metatarsal bones) and the proximal phalanges, located where one finds the "knuckles" of a human. A horse also has no muscles in its legs below the knees and hocks, only skin, hair, bone, tendons, ligaments, cartilage, and the assorted specialized tissues that make up the hoof. Hooves. The critical importance of the feet and legs is summed up by the traditional adage, "no foot, no horse". The horse hoof begins with the distal phalanges, the equivalent of the human fingertip or tip of the toe, surrounded by cartilage and other specialized, blood-rich soft tissues such as the laminae. The exterior hoof wall and horn of the sole is made of essentially the same material as a human fingernail. The end result is that a horse, weighing on average, travels on the same bones as a human on tiptoe. For the protection of the hoof under certain conditions, some horses have horseshoes placed on their feet by a professional farrier. The hoof continually grows, and needs to be trimmed (and horseshoes reset, if used) every five to eight weeks. Teeth. Horses are adapted to grazing. In an adult horse, there are 12 incisors, adapted to biting off the grass or other vegetation, at the front of the mouth. There are 24 teeth adapted for chewing, the premolars and molars, at the back of the mouth. Stallions and geldings have four additional teeth just behind the incisors, a type of canine teeth that are called "tushes." Some horses, both male and female, will also develop one to four very small vestigial teeth in front of the molars, known as "wolf" teeth, which are generally removed because they can interfere with the bit. There is an empty interdental space between the incisors and the molars where the bit rests directly on the bars (gums) of the horse's mouth when the horse is bridled. The incisors show a distinct wear and growth pattern as the horse ages, as well as change in the angle at which the chewing surfaces meet. The teeth continue to erupt throughout life as they are worn down by grazing, so a very rough estimate of a horse's age can be made by an examination of its teeth, although diet and veterinary care can affect the rate of tooth wear. Digestion. Horses are herbivores with a digestive system adapted to a forage diet of grasses and other plant material, consumed steadily throughout the day. Therefore, compared to humans, they have a relatively small stomach but very long intestines to facilitate a steady flow of nutrients. A horse will eat of food per day and, under normal use, drink to of water. Horses are not ruminants, so they have only one stomach, like humans, but unlike humans, they can also digest cellulose from grasses due to the presence of a "hind gut" called the cecum, or "water gut," which food goes through before reaching the large intestine. Unlike humans, horses cannot vomit, so digestion problems can quickly cause colic, a leading cause of death. Senses. The horse's senses are generally superior to those of a human. As prey animals, they must be A chair'" is used to sit on, commonly for use by one person. Chairs often have the seat raised above floor level, supported by four legs. A back or arm rests in a "'stool'", or when raised up, a bar stool (adults) or high chair (young children). A chair with arms is an "'armchair'" and with folding action and inclining footrest, a recliner. A permanently fixed chair in a train or theater is a "'seat'" or airline seat; when riding, it is a saddle and bicycle saddle, and for an automobile, a car seat or infant car seat. With wheels it is a wheelchair and when hung from above, a swing. The design may be made of porous materials, or be drilled with holes for decoration; a low back or gaps can provide ventilation. The back may extend above the height of the occupant's head, which can optionally contain a "headrest". A chair for more than one person is a couch, sofa, settee, or "loveseat"; or a bench. A separate footrest for a chair is known as an "ottoman", "hassock" or "pouffe". History of the Chair. The chair is of extreme antiquity. Although for many centuries and indeed for 1000s of years it was an article of state and dignity rather than an article of ordinary use. "The chair" is still extensively used as the emblem of authority in the House of Commons in the United Kingdom and Canada, and in many other settings. Committees, boards of directors, and academic departments all have a 'chairperson'. Endowed professorships are referred to as chairs. It was not, in fact, until the 16th century that it became common anywhere. The chest, the bench and the stool were until then the ordinary seats of everyday life, and the number of chairs which have survived from an earlier date is exceedingly limited; most of such examples are of ecclesiastical or seigneurial origin. Our knowledge of the chairs of remote antiquity is derived almost entirely from monuments, sculpture and paintings. A few actual examples exist in the British Museum, in the Egyptian Museum at Cairo, and elsewhere. In ancient Egypt chairs appear to have been of great richness and splendor. Fashioned of ebony and ivory, or of carved and gilded wood, they were covered with costly materials, magnificent patterns and supported upon representations of the legs of beasts or the figures of captives. The earliest known form of Greek chair, going back to five or six centuries BCE, had a back but stood straight up, front and back. During Tang dynasty (618- 907 AD), a higher seat first started to appear amongst the Chinese elite and their usage soon spread to all levels of society. By the 12th century seating on the floor was rare in China, unlike in other Asian countries where the custom continued, and the chair, or more commonly the stool, was used in the vast majority of houses throughout the country. In Europe, it was owing in great measure to the Renaissance that the chair ceased to be a privilege of state, and became a standard item of furniture whoever could afford to buy it. Once the idea of privilege faded the chair speedily came into general use. We find almost at once that the chair began to change every few years to reflect the fashions of the hour. The 20th century saw an increasing use of technology in chair construction with such things as all-metal folding chairs, metal-legged chairs, the Slumber Chair, moulded plastic chairs and ergonomic chairs. The recliner became a popular form, at least in part due to radio and television, and later a two-part. The modern movement of the 1960s produced new forms of chairs: the butterfly chair, bean bags, and the egg-shaped pod chair. Technological advances led to molded plywood and wood laminate chairs, as well as chairs made of leather or polymers. Mechanical technology incorporated into the chair enabled adjustable chairs, especially for office use. Motors embedded in the chair resulted in massage chairs. Design and ergonomics. Chair design considers intended usage, ergonomics (how comfortable it is for the occupant), as well as non-ergonomic functional requirements such as size, stack ability, fold ability, weight, durability, stain resistance and artistic design. Intended usage determines the desired seating position. "Task chairs", or any chair intended for people to work at a desk or table, including dining chairs, can only recline very slightly; otherwise the occupant is too far away from the desk or table. Dental chairs are necessarily reclined. Easy chairs for watching television or movies are somewhere in between depending on the height of the screen. Ergonomic design distributes the weight of the occupant to various parts of the body. A seat that is higher results in dangling feet and increased pressure on the underside of the knees ("popliteal fold"). It may also result in no weight on the feet which means more weight elsewhere. A lower seat may shift too much weight to the "seat bones" ("ischial tuberosities"). A reclining seat and back will shift weight to the occupant's back. This may be more comfortable for some in reducing weight on the seat area, but may be problematic for others who have bad backs. In general, if the occupant is supposed to sit for a long time, weight needs to be taken off the seat area and thus "easy" chairs intended for long periods of sitting are generally at least slightly reclined. However, reclining may not be suitable for chairs intended for work or eating at table. The back of the chair will support some of the weight of the occupant, reducing the weight on other parts of the body. In general, backrests come in three heights: Lower back backrests support only the lumbar region. Shoulder height backrests support the entire back and shoulders. Headrests support the head as well and are important in vehicles for preventing "whiplash" neck injuries in rear-end collisions where the head is jerked back suddenly. Reclining chairs typically have at least shoulder height backrests to shift weight to the shoulders instead of just the lower back. Some chairs have foot rests. A stool or other simple chair may have a simple straight or curved bar near the bottom for the sitter to place his or her feet on. A kneeling chair adds an additional body part, the knees, to support the weight of the body. A sit-stand chair distributes most of the weight of the occupant to the feet. Many chairs are padded or have cushions. Padding can be on the seat of the chair only, on the seat and back, or also on any arm rests and or foot rest the chair may have. Padding will not shift the weight to different parts of the body (unless the chair is so soft that the shape is altered). However, padding does distribute the weight by increasing the area of contact between the chair and the body. A hard wood chair feels hard because the contact point between the occupant and the chair is small. The same body weight over a smaller area means greater pressure on that area. Spreading the area reduces the pressure at any given point. In lieu of padding, flexible materials, such as wicker, may be used instead with similar effects of distributing the weight. Since most of the body weight is supported in the back of the seat, padding there should be firmer than the front of the seat which only has the weight of the legs to support. Chairs that have padding that is the same density front and back will feel soft in the back area and hard to the underside of the knees. There may be cases where padding is not desirable. For example, in chairs that are intended primarily for outdoor use. Where padding is not desirable, contouring may be used instead. A contoured seat pan attempts to distribute weight without padding. By matching the shape of the occupant's buttocks, weight is distributed and maximum pressure is reduced. Actual chair dimensions are determined by measurements of the human body or anthropometric measurements. The two most relevant anthropometric measurement for chair design is the popliteal height and buttock popliteal length. For someone seated, the popliteal height is the distance from the underside of the foot to the underside of the thigh at the knees. It is sometimes called the "stool height." The term "sitting height" is reserved for the height to the top of the head when seated. For American men, the median popliteal height is 16.3 inches and for American women it is 15.0 inches. The popliteal height, after adjusting for heels, clothing and other issues is used to determine the height of the chair seat. Mass produced chairs are typically 17 inches high. For someone seated, the buttock popliteal length is the horizontal distance from the back most part of the buttocks to the back of the lower leg. This anthropometric measurement is used to determine the seat depth. Mass produced chairs are typically 15-17 inches deep. Additional anthropometric measurements may be relevant to designing a chair. Hip breadth is used for chair width and armrest width. Elbow rest height is used to determine the height of the armrests. The buttock-knee length is used to determine "leg room" between rows of chairs. "Seat pitch" is the distance between rows of seats. In some airplanes and stadiums the leg room (the seat pitch less the thickness of the seat at thigh level) is so small that it is sometimes insufficient for the average person. For adjustable chairs, such as an office chair, the aforementioned principles are applied in adjusting the chair to the individual occupant. Armrests===. A chair may or may not have armrests; chairs with armrests are termed "armchairs". In French, a distinction is made between "fauteuil" and "chaise", the terms for chairs with and without armrests, respectively. If present, armrests will support part of the body weight through the arms if the arms are resting on the armrests. Armrests further have the function of making entry and exit from the chair easier (but from the side it becomes more difficult). Armrests should support the forearm and not the sensitive elbow area. Hence in some chair designs, the armrest is not continuous to the chair back, but is missing in the elbow area. A couch, bench, or other arrangement of seats next to each other may have armrest at the sides and or arm rests in between. The latter may be provided for comfort, but also for privacy e.g. in public transport and other public places, and to prevent lying on the bench. Arm rests reduce both desired and undesired proximity. A loveseat in particular, has "no" armrest in between. See also seats in movie theaters, and pictures of benches with and without arm rests. Chair seats. Chair seats vary widely in construction and may or may not match construction of the chair's back (backrest). Standards and specifications. Design considerations for chairs have been codified into standards. ISO 9241, "Ergonomic requirements for office work with visual display terminals (VDTs) Part 5: Workstation layout and postural requirements" is the most common one for modern chair design. There are multiple specific standards for different types of chairs. Dental chairs are specified by ISO 6875. Bean bag chairs are specified by ANSI standard ASTM F1912-98. ISO 7174 specifies stability of rocking and tilting chairs. ASTM F1858-98 specifies plastic lawn chairs. ASTM E1822-02b defines the combustibility of chairs when they are stacked. The Business and Institutional Furniture Manufacturer's Association (BIFMA) defines BIFMA X5.1 for testing of commercial-grade chairs. It specifies things like: The specification further defines heavier "proof" loads that chairs must withstand. Under these higher loads, the chair may be damaged, but it must not fail catastrophically. Large institutions that make bulk purchases will reference these standards within their own even more detailed criteria for purchase. Governments will often issue standards for purchases by government agencies (e.g. Canada's Canadian General Standards Board CAN CGSB 44.15M on "Straight Stacking Chair, Steel" or CAN CGSB 44.232-2002 on "Task Chairs for Office Work with Visual Display Terminal"). Accessories. In place of a built-in footrest, some chairs come with a matching ottoman'". An ottoman is a short stool intended to be used as a footrest but can sometimes be used as a stool. If matched to a glider, the ottoman may be mounted on swing arms so that the ottoman rocks back and forth with the main glider. A "'chair cover'" is a temporary fabric cover for a side chair. They are typically rented for formal events such as wedding receptions to increase the attractiveness of the chairs and decor. The chair covers may come with decorative chair ties, a ribbon to be tied as a bow behind the chair. Covers for sofas and couches are also available for homes with small children and pets. In the second half of 20th century, some people used custom clear plastic covers for expensive sofas and chairs to protect them. "'Chair pads'" are cushions for chairs. Some are decorative. In cars, they may be used to increase the height of the driver. Orthopedic backrests provide support for the back. Some manufacturers have patents on their designs and are recognized by medical associations as beneficial. Car seats sometimes have built-in and adjustable lumbar supports. "'Chair mats'" are plastic mats meant to cover carpet. This allows chairs on wheels to roll easily over the carpet and it protects the carpet. They come in various shapes, some specifically sized to fit partially under a desk. "'Remote control bags'" can be draped over the arm of easy chairs or sofas and used to hold remote controls. They are counter-weighted so as to not slide off the arms under the weight of the remote control. "'Chair glides'" are attached to the feet of chairs to prevent them from scratching or snagging on the floor.