horse |
bee |
top 10 words in brain distribution (in article): wear horse record design time drive type animal allow vehicle |
top 10 words in brain distribution (in article): species male female human bird wolf time common live wild |
top 10 words in brain distribution (not in article): card service power company information woman datum wheel clothe device |
top 10 words in brain distribution (not in article): animal horse wear breed power hunt cat train dog water |
times more probable under horse 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under bee (words not in the model) | |
The horse'" ("Equus ferus caballus") is a hoofed (ungulate) mammal, a subspecies of one of seven extant species of the family Equidae. The horse has evolved over the past 45 to 55 million years from a small multi-toed creature into the large, single-toed animal of today. Humans began to domesticate horses around 4000 BC, and their domestication is believed to have been widespread by 3000 BC; by 2000 BC the use of domesticated horses had spread throughout the Eurasian continent. Although most horses today are domesticated, there are still endangered populations of the Przewalski's Horse, the only remaining true wild horse, as well as more common feral horses which live in the wild but are descended from domesticated ancestors. There is an extensive, specialized vocabulary used to describe equine-related concepts, covering everything from anatomy to life stages, size, colors, markings, breeds, locomotion, and behavior. Horses are anatomically designed to use speed to escape predators, and have a well-developed sense of balance and a strong fight-or-flight instinct. Related to this need to flee from predators in the wild is an unusual trait: horses are able to sleep both standing up and lying down. Female horses, called mares, carry their young for approximately 11 months, and a young horse, called a foal, can stand and run shortly following birth. Most domesticated horses begin training under saddle or in harness between the ages of two and four. They reach full adult development by age five, and have an average lifespan of between 25 and 30 years. Horse breeds are loosely divided into three categories based on general temperament: spirited "hot bloods" with speed and endurance; "cold bloods," such as draft horses and some ponies, suitable for slow, heavy work; and "warmbloods," developed from crosses between hot bloods and cold bloods, often focusing on creating breeds for specific riding purposes, particularly in Europe. There are over 300 breeds of horses in the world today, developed for many different uses. Horses and humans interact in many ways, not only in a wide variety of sport competitions and non-competitive recreational pursuits, but also in working activities including police work, agriculture, entertainment, assisted learning and therapy. Horses were historically used in warfare. A wide variety of riding and driving techniques have been developed, using many different styles of equipment and methods of control. Many products are derived from horses, including meat, milk, hide, hair, bone, and pharmaceuticals extracted from the urine of pregnant mares. Humans provide domesticated horses with food, water and shelter, as well as attention from specialists such as veterinarians and farriers. Biology. Horse anatomy is described by a large number of specific terms, as illustrated by the chart to the right. Specific terms also describe various ages, colors and breeds. Age. Depending on breed, management and environment, the domestic horse today has a life expectancy of 25 to 30 years. It is uncommon, but a few animals live into their 40s and, occasionally, beyond. The oldest verifiable record was "Old Billy," a 19th-century horse that lived to the age of 62. In modern times, Sugar Puff, who had been listed in the Guinness Book of World Records as the world's oldest living pony, died in 2007, aged 56. Regardless of a horse's actual birth date, for most competition purposes an animal is considered a year older on January 1 of each year in the northern hemisphere and August 1 in the southern hemisphere. The exception is in endurance riding, where the minimum age to compete is based on the animal's calendar age. A very rough estimate of a horse's age can be made from looking at its teeth. The following terminology is used to describe horses of various ages: In horse racing, the definitions of colt, filly, mare, and stallion may differ from those given above. In the UK, Thoroughbred horse racing defines a colt as a male less than five years old, and a filly as a female less than five years old. In the USA, both Thoroughbred racing and harness racing defines colts and fillies as four years old and younger. Size. The English-speaking world measures the height of horses in hands, abbreviated "h" or "hh," for "hands high," measured at the highest point of an animal's withers, where the neck meets the back, chosen as a stable point of the anatomy, unlike the head or neck, which move up and down; one hand is. Intermediate heights are defined by hands and inches, rounding to the lower measurement in hands, followed by a decimal point and the number of additional inches between 1 and 3. Thus a horse described as "15.2 h," is 15 hands, 2 inches in height. The size of horses varies by breed, but can also be influenced by nutrition. The general rule for cutoff in height between what is considered a horse and a pony at maturity is 14.2 hands. An animal 14.2 h or over is usually considered to be a horse and one less than 14.2 h a pony. However, there are exceptions to the general rule. Some breeds which typically produce individuals both under and over 14.2 h are considered horses regardless of their height. Conversely, some pony breeds may have features in common with horses, and individual animals may occasionally mature at over 14.2 h, but are still considered to be ponies. The distinction between a horse and pony is not simply a difference in height, but takes account of other aspects of "phenotype" or appearance, such as conformation and temperament. Ponies often exhibit thicker manes, tails and overall coat. They also have proportionally shorter legs, wider barrels, heavier bone, shorter and thicker necks, and short heads with broad foreheads. They often have calmer temperaments than horses and also a high level of equine intelligence that may or may not be used to cooperate with human handlers. In fact, small size, by itself, is sometimes not a factor at all. While the Shetland pony stands on average 10 hands high, the Falabella and other miniature horses, which can be no taller than, the size of a medium-sized dog, are classified by their respective registries as very small horses rather than as ponies. Light riding horses such as Arabians, Morgans, or Quarter Horses usually range in height from 14 to 16 hands and can weigh from. Larger riding horses such as Thoroughbreds, American Saddlebreds or Warmbloods usually start at about 15.2 hands and often are as tall as 17 hands, weighing from. Heavy or draft horses such as the Clydesdale, Belgian, Percheron, and Shire are usually at least 16 to 18 hands high and can weigh from about. The largest horse in recorded history was probably a Shire horse named Sampson, who lived during the late 1800s. He stood 21.2½ hands high, and his peak weight was estimated at. The current record holder for the world's smallest horse is Thumbelina, a fully mature miniature horse affected by dwarfism. She is tall and weighs. Colors and markings. Horses exhibit a diverse array of coat colors and distinctive markings, described with a specialized vocabulary. Often, a horse is classified first by its coat color, before breed or sex. Flashy or unusual colors are sometimes very popular, as are horses with particularly attractive markings. Horses of the same color may be distinguished from one another by their markings. The genetics that create many horse coat colors have been identified, although research continues on specific genes and mutations that result in specific color traits. Essentially, all horse colors begin with a genetic base of "red" (chestnut) or "black," with the addition of alleles for spotting, graying, suppression or dilution of color, or other effects acting upon the base colors to create the dozens of possible coat colors found in horses. Horses which are light in color are often misnamed as being "white" horses. A horse that looks pure white is, in most cases, actually a middle-aged or older gray. Grays have black skin underneath their white hair coat (with the exception of small amounts of pink skin under white markings). The only horses properly called white are those with pink skin under a white hair coat, a fairly rare occurrence. There are no truly albino horses, with pink skin and red eyes, as albinism is a lethal condition in horses. Reproduction and development. Pregnancy lasts for approximately 335–340 days and usually results in one foal. Twins are very rare. Colts are carried on average about 4 days longer than fillies. Horses are a precocial species, and foals are capable of standing and running within a short time following birth. Horses, particularly colts, may sometimes be physically capable of reproduction at about 18 months. In practice, individuals are rarely allowed to breed before the age of three, especially females. Horses four years old are considered mature, although the skeleton normally continues to develop until the age of six; the precise time of completion of development also depends on the horse's size, breed, gender, and the quality of care provided by its owner. Also, if the horse is larger, its bones are larger; therefore, not only do the bones take longer to actually form bone tissue, but the epiphyseal plates are also larger and take longer to convert from cartilage to bone. These plates convert after the other parts of the bones, but are crucial to development. Depending on maturity, breed, and the tasks expected, young horses are usually put under saddle and trained to be ridden between the ages of two and four. Although Thoroughbred race horses are put on the track at as young as two years old in some countries, horses specifically bred for sports such as dressage are generally not entered into top-level competition until they are a minimum of four years old, because their bones and muscles are not solidly developed, nor is their advanced training complete. For endurance riding competition, horses are not deemed mature enough to compete until they are a full 60 calendar months (5 years) old. Skeletal system. Horses have a skeleton that averages 205 bones. A significant difference between the horse skeleton, compared to that of a human, is the lack of a collarbone—the horse's front limb system is attached to the spinal column by a powerful set of muscles, tendons and ligaments that attach the shoulder blade to the torso. The horse's legs and hooves are also unique structures. Their leg bones are proportioned differently from those of a human. For example, the body part that is called a horse's "knee" is actually made up of the carpal bones that correspond to the human wrist. Similarly, the hock, contains the bones equivalent to those in the human ankle and heel. The lower leg bones of a horse correspond to the bones of the human hand or foot, and the fetlock (incorrectly called the "ankle") is actually the proximal sesamoid bones between the cannon bones (a single equivalent to the human metacarpal or metatarsal bones) and the proximal phalanges, located where one finds the "knuckles" of a human. A horse also has no muscles in its legs below the knees and hocks, only skin, hair, bone, tendons, ligaments, cartilage, and the assorted specialized tissues that make up the hoof. Hooves. The critical importance of the feet and legs is summed up by the traditional adage, "no foot, no horse". The horse hoof begins with the distal phalanges, the equivalent of the human fingertip or tip of the toe, surrounded by cartilage and other specialized, blood-rich soft tissues such as the laminae. The exterior hoof wall and horn of the sole is made of essentially the same material as a human fingernail. The end result is that a horse, weighing on average, travels on the same bones as a human on tiptoe. For the protection of the hoof under certain conditions, some horses have horseshoes placed on their feet by a professional farrier. The hoof continually grows, and needs to be trimmed (and horseshoes reset, if used) every five to eight weeks. Teeth. Horses are adapted to grazing. In an adult horse, there are 12 incisors, adapted to biting off the grass or other vegetation, at the front of the mouth. There are 24 teeth adapted for chewing, the premolars and molars, at the back of the mouth. Stallions and geldings have four additional teeth just behind the incisors, a type of canine teeth that are called "tushes." Some horses, both male and female, will also develop one to four very small vestigial teeth in front of the molars, known as "wolf" teeth, which are generally removed because they can interfere with the bit. There is an empty interdental space between the incisors and the molars where the bit rests directly on the bars (gums) of the horse's mouth when the horse is bridled. The incisors show a distinct wear and growth pattern as the horse ages, as well as change in the angle at which the chewing surfaces meet. The teeth continue to erupt throughout life as they are worn down by grazing, so a very rough estimate of a horse's age can be made by an examination of its teeth, although diet and veterinary care can affect the rate of tooth wear. Digestion. Horses are herbivores with a digestive system adapted to a forage diet of grasses and other plant material, consumed steadily throughout the day. Therefore, compared to humans, they have a relatively small stomach but very long intestines to facilitate a steady flow of nutrients. A horse will eat of food per day and, under normal use, drink to of water. Horses are not ruminants, so they have only one stomach, like humans, but unlike humans, they can also digest cellulose from grasses due to the presence of a "hind gut" called the cecum, or "water gut," which food goes through before reaching the large intestine. Unlike humans, horses cannot vomit, so digestion problems can quickly cause colic, a leading cause of death. Senses. The horse's senses are generally superior to those of a human. As prey animals, they must be aware of their surroundings at all times. They have the largest eyes of any land mammal, and because their eyes are positioned on the sides of their heads, horses have a range of vision of more than 350°, with approximately 65° of this being binocular (seen with both eyes) and the remaining 285° monocular (seen with only one eye). Horses have excellent day and night vision, but studies indicate that they have two-color, or dichromatic vision; their color vision is somewhat like red-green color blindness in humans. This means that certain colors, especially red and related colors, appear more green. Their hearing is good, and the pinna of each ear can rotate up to 180°, giving the potential for 360° hearing without having to move the head. Their sense of smell, while much better than that of humans, is not their strongest asset; they rely to a greater extent on vision. Horses have a great sense of balance, due partly to their ability to feel their footing and partly to highly developed proprioceptive abilities (the unconscious sense of where the body and limbs are at all times). A horse's sense of touch is well developed. The most sensitive areas are around the eyes, ears and nose. Via touch, horses perceive and respond immediately to changes in their environment, sensing contact as subtle as an insect landing anywhere on the body. Horses have an advanced sense of taste that allows them to sort through grains and grasses to choose what they would most like to eat, and their prehensile lips can easily sort even the smallest grains. Horses generally will not eat poisonous plants. However, there are exceptions and horses will occasionally eat toxic amounts of poisonous plants even when there is adequate healthy food. Movement. All horses move naturally with four basic gaits: the four-beat walk, which averages four miles per hour; the two-beat trot or jog, which averages per hour (faster for harness racing horses); and the leaping gaits known as the canter or lope (a three-beat gait that is per hour), and the gallop. The gallop averages per hour. The world record for a horse galloping over a short, sprint distance is per hour. Besides these basic gaits, some horses perform a two-beat pace, instead of the trot. In addition, there are several four-beat "ambling" gaits that are approximately the speed of a trot or pace, though smoother to ride. These include the lateral slow gait, rack, running walk, and tölt as well as the diagonal fox trot. Ambling gaits are often genetic traits in specific breeds, known collectively as gaited horses. In most cases, gaited horses replace the standard trot with one of the ambling gaits. Behavior. Horses are prey animals with a well-developed fight-or-flight instinct. Their first response to threat is to startle and usually flee, although they are known to stand their ground and defend themselves or their offspring in cases where flight is not possible, or when their young are threatened. They also tend to be curious; when startled, they will often hesitate an instant to ascertain the cause of their fright, and may not always flee from something that they perceive as non-threatening. Through selective breeding, some breeds of horses are quite docile, particularly certain large draft horses. Most light horse riding breeds were developed for speed, agility, alertness and endurance; natural qualities that extend from their wild ancestors. Horses are herd animals, with a clear hierarchy of rank, led by a dominant animal (usually a mare). They are also social creatures who are able to form companionship attachments to their own species and to other animals, including humans. They communicate in various ways, including vocalizations such as nickering or whinnying, mutual grooming, and body language. Many horses will become difficult to manage if they are isolated. Through proper training, it is possible to teach any horse to accept a human as a type of companion, and thus be comfortable away from other horses. When confined with insufficient companionship, exercise or stimulation, individuals may develop stable vices, an assortment of bad habits, mostly psychological in origin, that include wood chewing, wall kicking, "weaving" (rocking back and forth) and other problems. Intelligence and learning. In the past, horses were considered unintelligent, with no abstract thinking ability, unable to generalize, and driven primarily by a herd mentality. However, recent studies show that they perform a number of cognitive tasks on a daily basis, and frequently engage in mental challenges that include food procurement and social system identification. They have also been shown to have good spatial discrimination abilities. Studies have assessed equine intelligence in the realms of problem solving, learning speed, and knowledge retention. Results show that horses excel at simple learning, but also are able to solve advanced cognitive challenges that involve categorization and concept learning. They have been shown to learn from habituation, desensitization, Pavlovian conditioning, and operant conditioning. They respond to and learn from both positive and negative reinforcement. Domesticated horses tend to face greater mental challenges than wild horses, due to living in artificial environments that stifle instinctual behavior while learning tasks that are not natural. Horses are creatures of habit that respond and adapt well to regimentation, and respond best when the same routines and techniques are used consistently. Some trainers believe that "intelligent" horses are reflections of intelligent trainers who effectively use response conditioning techniques | Bees'" are flying insects closely related to wasps and ants. Bees are a monophyletic lineage within the superfamily "'Apoidea'", presently classified by the unranked taxon name "'Anthophila'". There are nearly 20,000 known species of bee, in nine recognized families, though many are undescribed and the actual number is probably higher. They are found on every continent except Antarctica, in every habitat on the planet that contains insect-pollinated flowering plants. Introduction. Bees are adapted for feeding on nectar and pollen, the former primarily as an energy source, and the latter primarily for protein and other nutrients. Most pollen is used as food for larvae. Bees have a long proboscis (a complex "tongue") that enables them to obtain the nectar from flowers. They have antennae almost universally made up of 13 segments in males and 12 in females, as is typical for the superfamily. Bees all have two pairs of wings, the hind pair being the smaller of the two; in a very few species, one sex or caste has relatively short wings that make flight difficult or impossible, but none is wingless. The smallest bee is "Trigona minima", a stingless bee whose workers are about 2.1 mm (5 64") long. The largest bee in the world is "Megachile pluto", a leafcutter bee whose females can attain a length of 39 mm (1.5"). Members of the family Halictidae, or sweat bees, are the most common type of bee in the Northern Hemisphere, though they are small and often mistaken for wasps or flies. The best-known bee species is the European honey bee, which, as its name suggests, produces honey, as do a few other types of bee. Human management of this species is known as beekeeping or apiculture. Bees are the favorite meal of "Merops apiaster", the bee-eater bird. Other common predators are kingbirds, mockingbirds, bee wolves, and dragonflies. Pollination. Bees play an important role in pollinating flowering plants, and are the major type of pollinator in ecosystems that contain flowering plants. Bees either focus on gathering nectar or on gathering pollen depending on demand, especially in social species. Bees gathering nectar may accomplish pollination, but bees that are deliberately gathering pollen are more efficient pollinators. It is estimated that one third of the human food supply depends on insect pollination, most of which is accomplished by bees, especially the domesticated European honey bee. Contract pollination has overtaken the role of honey production for beekeepers in many countries. Monoculture and the massive decline of many bee species (both wild and domesticated) have increasingly caused honey bee keepers to become migratory so that bees can be concentrated in seasonally-varying high-demand areas of pollination. Most bees are fuzzy and carry an electrostatic charge, which aids in the adherence of pollen. Female bees periodically stop foraging and groom themselves to pack the pollen into the scopa, which is on the legs in most bees, and on the ventral abdomen on others, and modified into specialized pollen baskets on the legs of honey bees and their relatives. Many bees are opportunistic foragers, and will gather pollen from a variety of plants, while others are oligolectic, gathering pollen from only one or a few types of plant. A small number of plants produce nutritious floral oils rather than pollen, which are gathered and used by oligolectic bees. One small subgroup of stingless bees, called "vulture bees," is specialized to feed on carrion, and these are the only bees that do not use plant products as food. Pollen and nectar are usually combined together to form a "provision mass", which is often soupy, but can be firm. It is formed into various shapes (typically spheroid), and stored in a small chamber (a "cell"), with the egg deposited on the mass. The cell is typically sealed after the egg is laid, and the adult and larva never interact directly (a system called "mass provisioning"). Visiting flowers can be a dangerous occupation. Many assassin bugs and crab spiders hide in flowers to capture unwary bees. Other bees are lost to birds in flight. Insecticides used on blooming plants kill many bees, both by direct poisoning and by contamination of their food supply. A honey bee queen may lay 2000 eggs per day during spring buildup, but she also must lay 1000 to 1500 eggs per day during the foraging season, mostly to replace daily casualties, most of which are workers dying of old age. Among solitary and primitively social bees, however, lifetime reproduction is among the lowest of all insects, as it is common for females of such species to produce fewer than 25 offspring. The population value of bees depends partly on the individual efficiency of the bees, but also on the population itself. Thus, while bumblebees have been found to be about ten times more efficient pollinators on cucurbits, the total efficiency of a colony of honey bees is much greater, due to greater numbers. Likewise, during early spring orchard blossoms, bumblebee populations are limited to only a few queens, and thus are not significant pollinators of early fruit. Depopulation. Recently, managed populations of European honey bees have experienced substantial declines. This has prompted investigations into the phenomenon amidst great concern over the nature and extent of the losses. One aspect of the problem is believed to be "Colony Collapse Disorder" but many of the losses outside the US are attributed to other causes. Pesticides used to treat seeds, such as Clothianidin and Imidacloprid, may also negatively impact honey bee populations. Other species of bees such as mason bees are increasingly cultured and used to meet the agricultural pollination need. Most native pollinators are solitary bees, which often survive in refuge in wild areas away from agricultural spraying, but may still be poisoned in massive spray programs for mosquitoes, gypsy moths, or other insect pests. Evolution. Bees, like ants, are a specialized form of wasp. The ancestors of bees were wasps in the family Crabronidae, and therefore predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects that were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario has also occurred within the vespoid wasps, where the group known as "pollen wasps" also evolved from predatory ancestors. Up until recently the oldest non-compression bee fossil had been "Cretotrigona prisca" in New Jersey amber and of Cretaceous age, a meliponine. A recently reported bee fossil, of the genus "Melittosphex", is considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees", and dates from the early Cretaceous (~100 mya). Derived features of its morphology ("apomorphies") place it clearly within the bees, but it retains two unmodified ancestral traits ("plesiomorphies") of the legs (two mid-tibial spurs, and a slender hind basitarsus), indicative of its transitional status. The earliest animal-pollinated flowers were pollinated by insects such as beetles, so the syndrome of insect pollination was well established before bees first appeared. The novelty is that bees are "specialized" as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are generally more efficient at the task than beetles, flies, butterflies, pollen wasps, or any other pollinating insect. The appearance of such floral specialists is believed to have driven the adaptive radiation of the angiosperms, and, in turn, the bees themselves. Among living bee groups, the Dasypodaidae are now considered to be the most "primitive", and sister taxon to the remainder of the bees, contrary to earlier hypotheses that the "short-tongued" bee family Colletidae was the basal group of bees; the short, wasp-like mouthparts of colletids are the result of convergent evolution, rather than indicative of a plesiomorphic condition. Eusocial and semisocial bees. Bees may be solitary or may live in various types of communities. The most advanced of these are eusocial colonies found among the honey bees, bumblebees, and stingless bees. Sociality, of several different types, is believed to have evolved separately many times within the bees. In some species, groups of cohabiting females may be sisters, and if there is a division of labor within the group, then they are considered semisocial. If, in addition to a division of labor, the group consists of a mother and her daughters, then the group is called eusocial. The mother is considered the "queen" and the daughters are "workers". These castes may be purely behavioral alternatives, in which case the system is considered "primitively eusocial" (similar to many paper wasps), and if the castes are morphologically discrete, then the system is "highly eusocial". There are many more species of primitively eusocial bees than highly eusocial bees, but they have rarely been studied. The biology of most such species is almost completely unknown. The vast majority are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. The only physical difference between queens and workers is average size, if they differ at all. Most species have a single season colony cycle, even in the tropics, and only mated females (future queens, or "gynes") hibernate (called diapause). A few species have long active seasons and attain colony sizes in the hundreds. The orchid bees include a number of primitively eusocial species with similar biology. Certain species of allodapine bees (relatives of carpenter bees) also have primitively eusocial colonies, with unusual levels of interaction between the adult bees and the developing brood. This is "progressive provisioning"; a larva's food is supplied gradually as it develops. This system is also seen in honey bees and some bumblebees. Highly eusocial bees live in colonies. Each colony has a single queen, many workers and, at certain stages in the colony cycle, drones. When humans provide the nest, it is called a hive. A honey bee hive can contain up to 40,000 bees at their annual peak, which occurs in the spring, but usually have fewer. Bumblebees. Bumblebees ("Bombus terrestris", "B. pratorum", et al.) are eusocial in a manner quite similar to the eusocial Vespidae such as hornets. The queen initiates a nest on her own (unlike queens of honey bees and stingless bees which start nests via swarms in the company of a large worker force). Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the nest cavity (pre-existing), and colonies are rarely perennial. Bumblebee queens sometimes seek winter safety in honey bee hives, where they are sometimes found dead in the spring by beekeepers, presumably stung to death by the honey bees. It is unknown whether any survive winter in such an environment. Stingless bees. Stingless bees are very diverse in behavior, but all are highly eusocial. They practice mass provisioning, complex nest architecture, and perennial colonies. Honey bees. The true honey bees (genus "Apis") have arguably the most complex social behavior among the bees. The European (or Western) honey bee, "Apis mellifera", is the best known bee species and one of the best known of all insects. Africanized honey bee. Africanized bees, also called killer bees, are a hybrid strain of "Apis mellifera" derived from experiments to cross European and African honey bees by Warwick Estevam Kerr. Several queen bees escaped his laboratory in South America and have spread throughout the Americas. Africanized honey bees are more defensive than European honey bees. Solitary and communal bees. Most other bees, including familiar species of bee such as the Eastern carpenter bee ("Xylocopa virginica"), alfalfa leafcutter bee ("Megachile rotundata"), orchard mason bee ("Osmia lignaria") and the hornfaced bee ("Osmia cornifrons") are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There are no "worker" bees for these species. Solitary bees typically produce neither honey nor beeswax. They are immune from acarine and "Varroa" mites (see diseases of the honey bee), but have their own unique parasites, pests and diseases. Solitary bees are important pollinators, and pollen is gathered for provisioning the nest with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have very advanced types of pollen carrying structures on their bodies. A very few species of solitary bees are being increasingly cultured for commercial pollination. Solitary bees are often oligoleges, in that they only gather pollen from one or a few species genera of plants (unlike honey bees and bumblebees which are generalists). No known bees are nectar specialists; many oligolectic bees will visit multiple plants for nectar, but there are no bees which visit only one plant for nectar while also gathering pollen from many different sources. Specialist pollinators also include bee species that gather floral oils instead of pollen, and male orchid bees, which gather aromatic compounds from orchids (one of the only cases where male bees are effective pollinators). In a very few cases only one species of bee can effectively pollinate a plant species, and some plants are endangered at least in part because their pollinator is dying off. There is, however, a pronounced tendency for oligolectic bees to be associated with common, widespread plants which are visited by multiple pollinators (e.g., there are some 40 oligoleges associated with creosotebush in the US desert southwest, and a similar pattern is seen in sunflowers, asters, mesquite, etc.) Solitary bees create nests in hollow reeds or twigs, holes in wood, or, most commonly, in tunnels in the ground. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Providing nest boxes for solitary bees is increasingly popular for gardeners. Solitary bees are either stingless or very unlikely to sting (only in self defense, if ever). While solitary females each make individual nests, some species are gregarious, preferring to make nests near others of the same species, giving the appearance to the casual observer that they are social. Large groups of solitary bee nests are called "aggregations", to distinguish them from colonies. In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when there are multiple females using that same entrance on a regular basis. Cleptoparasitic bees. Cleptoparasitic bees, commonly called "cuckoo bees" because their behavior is similar to cuckoo birds, occur in several bee families, though the name is technically best applied to the apid subfamily Nomadinae. Females of these bees lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the cuckoo bee larva hatches it consumes the host larva's pollen ball, and if the female cleptoparasite has not already done so, kills and eats the host larva. In a few cases where the hosts are social species, the cleptoparasite remains in the host nest and lays many eggs, sometimes even killing the host queen and replacing her. Many cleptoparasitic bees are closely related to, and resemble, their hosts in looks and size, (i.e., the "Bombus" subgenus "Psithyrus", which are parasitic bumblebees that infiltrate nests of species in other subgenera of "Bombus"). This common pattern gave rise to the ecological principle known as "Emery's Rule". Others parasitize bees in different families, like "Townsendiella", a nomadine apid, one species of which is a cleptoparasite of the dasypodaid genus "Hesperapis", while the other species in the same genus attack halictid bees. Nocturnal bees. Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular (these may be either the vespertine or matinal type). These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Many are pollinators of flowers that themselves are crepuscular, such as evening primroses, and some live in desert habitats where daytime temperatures are extremely high. Bee flight. In his 1934 French book "Le vol des insectes", M. Magnan wrote that he and a Mr. Saint-Lague had applied the equations of air resistance to bumblebees and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality". This has led to a common misconception that bees "violate aerodynamic theory", but in fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics. In 1996 Charlie Ellington at Cambridge University showed that vortices created by many insects’ wings and non-linear effects were a vital source of lift; vortices and non-linear phenomena are notoriously difficult areas of hydrodynamics, which has made for slow progress in theoretical understanding of insect flight. In 2005 Michael Dickinson and his Caltech colleagues studied honey bee flight with the assistance of high-speed cinematography and a giant robotic mock-up of a bee wing. Their analysis revealed sufficient lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller. In 2008 Barbara Shipman discovered a mathematical connection between the dance of bees and the Flag manifold. Bees and humans. Bees figure prominently in mythology (See Bee (mythology)) and have been used by political theorists as a model for human society. Journalist Bee Wilson states that the image of a community of honey bees "occurs from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, as well as by social theorists Bernard Mandeville and Karl Marx." Despite the honey bee's painful sting and the stereotype of insects as pests, bees are generally held in high regard. This is most likely due to their usefulness as pollinators and as producers of honey, their social nature, and their reputation for diligence. Bees are one of the few insects regularly used on advertisements, being used to illustrate honey and foods made with honey (such as Honey Nut Cheerios). In North America, yellowjackets and hornets, especially when encountered as flying pests, are often misidentified as bees, despite numerous differences between them; see Characteristics of common wasps and bees. Although a bee sting can be deadly to those with allergies, virtually all bee species are non-aggressive if undisturbed and many cannot sting at all. Humans are often a greater danger to bees, as bees can be affected or even harmed by encounters with toxic chemicals in the environment; see Bees and toxic chemicals. |