ratio of word probabilities predicted from brain for hand and arch

close this window

hand

arch

top 10 words in brain distribution (in article):
body muscle form human animal brain bone tissue function organ
top 10 words in brain distribution (in article):
build state world time century term building park refer form
top 10 words in brain distribution (not in article):
cell horse wear species organism structure type bacterium woman membrane
top 10 words in brain distribution (not in article):
city house store street town home tea Unite bus people
times more probable under hand 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under arch
(words not in the model)
The hands'" (med. /lat.: manus, pl. manūs) are the two intricate, prehensile, multi-fingered body parts normally located at the end of each arm of a human or other primate. They are the chief organs for physically manipulating the environment, using anywhere from the roughest motor skills (wielding a club) to the finest (threading a needle), and since the fingertips contain some of the densest areas of nerve endings on the human body, they are also the richest source of tactile feedback so that sense of touch is intimately associated with human hands. Like other paired organs (eyes, ears, legs), each hand is dominantly controlled by the opposing brain hemisphere, and thus handedness, or preferred hand choice for single-handed activities such as writing with a pen, reflects a significant individual trait. What constitutes a hand? Many mammals and other animals have grasping appendages similar in form to a hand such as paws, claws, and talons, but these are not scientifically considered to be hands. The scientific use of the term "hand" to distinguish the terminations of the front paws from the hind ones is an example of anthropomorphism. The only true hands appear in the mammalian order of primates. Hands must also have opposable thumbs, as described later in the text. Humans have only two hands (except in cases of polymelia), which are attached to the arms. Apes and monkeys are sometimes described as having four hands, because the toes are long and the hallux is opposable and looks more like a thumb, thus enabling the feet to be used as hands. Also, some apes have toes that are longer than human fingers. Anatomy of the human hand. The human hand consists of a broad palm (metacarpus) with 5 digits, attached to the forearm by a joint called the wrist (carpus). The back of the hand is formally called the dorsum of the hand. Digits. The four fingers on the hand are used for the outermost performance; these four digits can be folded over the palm which allows the grasping of objects. Each finger, starting with the one closest to the thumb, has a colloquial name to distinguish it from the others: The thumb (connected to the trapezium) is located on one of the sides, parallel to the arm. The thumb can be easily rotated 90°, on a level perpendicular to the palm, unlike the other fingers which can only be rotated approximately 45°. A reliable way of identifying true hands is from the presence of opposable thumbs. Opposable thumbs are identified by the ability to be brought opposite to the fingers, a muscle action known as opposition. Bones. The human hand has 27 bones: the carpus or wrist account for 8; the metacarpus or palm contains 5; the remaining 14 are digital bones; fingers and thumb. The eight bones of the wrist are arranged in two rows of four. These bones fit into a shallow socket formed by the bones of the forearm. The bones of proximal row are (from lateral to medial): scaphoid, lunate, triquetral and pisiform. The bones of the distal row are (from lateral to medial): trapezium, trapezoid, capitate and hamate. The palm has 5 bones (metacarpals), one to each of the 5 digits. These metacarpals have a head and a shaft. Human hands contain 14 digital bones, also called phalanges, or phalanx bones: 2 in the thumb (the thumb has no middle phalanx) and 3 in each of the four fingers. These are: Sesamoid bones are small ossified nodes embedded in the tendons to provide extra leverage and reduce pressure on the underlying tissue. Many exist around the palm at the bases of the digits; the exact number varies between different people. Articulations=== Also of note is that the articulation of the human hand is more complex and delicate than that of comparable organs in any other animals. Without this extra articulation, we would not be able to operate a wide variety of tools and devices. The hand can also form a fist, for example in combat, or as a gesture. Muscles and tendons. The movements of the human hand are accomplished by two sets of each of these tissues. They can be subdivided into two groups: the extrinsic and intrinsic muscle groups. The extrinsic muscle groups are the long flexors and extensors. They are called extrinsic because the muscle belly is located on the forearm. The intrinsic muscle groups are the thenar and hypothenar muscles (thenar referring to the thumb, hypothenar to the small finger), the interosseus muscles (between the metacarpal bones, four dorsally and three volarly) and the lumbrical muscles. These muscles arise from the deep flexor (and are special because they have no bony origin) and insert on the dorsal extensor hood mechanism. The fingers have two long flexors, located on the underside of the forearm. They insert by tendons to the phalanges of the fingers. The deep flexor attaches to the distal phalanx, and the superficial flexor attaches to the middle phalanx. The flexors allow for the actual bending of the fingers. The thumb has one long flexor and a short flexor in the thenar muscle group. The human thumb also has other muscles in the thenar group (opponens- and abductor muscle), moving the thumb in opposition, making grasping possible. The extensors are located on the back of the forearm and are connected in a more complex way than the flexors to the dorsum of the fingers. The tendons unite with the interosseous and lumbrical muscles to form the extensorhood mechanism. The primary function of the extensors is to straighten out the digits. The thumb has two extensors in the forearm; the tendons of these form the anatomical snuff box. Also, the index finger and the little finger have an extra extensor, used for instance for pointing. The extensors are situated within 6 separate compartments. The 1st compartment contains abductor pollicis longus and extensor pollicis brevis. The 2nd compartment contains extensors carpi radialis longus and brevis. The 3rd compartment contains extensor pollicis longus. The extensor digitorum indicis and extensor digititorum communis are within the 4th compartment. Extensor digiti minimi is in the fifth, and extensor carpi ulnaris is in the 6th. Variation. Some people have more than the usual number of fingers or toes, a condition called polydactyly. Others may have more than the typical number of metacarpal bones, a condition often caused by genetic disorders like Catel-Manzke syndrome. The average length of an adult male hand is 189 mm, while the average length of an adult female hand is 172 mm. The average hand breadth for adult males and females is 84 and 74 mm respectively. An arch'" is a structure that spans a space while supporting weight (e.g. a doorway in a stone wall). Arches appeared as early as the 2nd millennium BC in Mesopotamian brick architecture, but their systematic use started with the Ancient Romans who were the first to apply the technique to a wide range of structures. History. Arches were known by the Mesopotamian, Urartian, Harappan, Egyptian, Babylonian, Greek and Assyrian civilizations, but their use was infrequent and mostly confined to underground structures such as drains where the problem of lateral thrust is greatly diminished. The ancient Romans learned the arch from the Etruscans, refined it and were the first builders to tap its full potential for above ground buildings: "The Romans were the first builders in Europe, perhaps the first in the world, fully to appreciate the advantages of the arch, the vault and the dome." Throughout the Roman empire, their engineers erected arch structures such as bridges, aqueducts, and gates. They also introduced the triumphal arch as a military monument. Vaults began to be used for roofing large interior spaces such as halls and temples, a function which was also assumed by domed structures from the 1st century BC onwards. The Roman arch is semicircular, and built from an odd number of arch bricks (called "voussoirs"). An odd number of bricks is required for there to be a "capstone" or "keystone", the topmost stone in the arch. The Roman arch's shape is the simplest to build, but not the strongest. There is a tendency for the sides to bulge outwards, which must be counteracted by an added weight of masonry to push them inwards. The Romans used this type of semicircular arch freely in many of their secular structures such as aqueducts, palaces and amphitheaters. The semicircular arch was followed in Europe by the pointed Gothic arch or ogive (derived from the Islamic pointed arch in Moorish Spain), whose centreline more closely followed the forces of compression and which was therefore stronger. The semicircular arch can be flattened to make an elliptical arch as in the Ponte Santa Trinita. The parabolic and catenary arches are now known to be the theoretically strongest forms. Parabolic arches were introduced in construction by the Spanish architect Antoni Gaudí, who admired the structural system of Gothic style, but for the buttresses, which he termed “architectural crutches”. The catenary and parabolic arches carry all horizontal thrust to the foundation and so do not need additional elements. The horseshoe arch is based on the semicircular arch, but its lower ends are extended further round the circle until they start to converge. The first examples known are carved into rock in India in the first century AD, while the first known built horseshoe arches are known from Aksum (modern day Ethiopia and Eritrea) from around the 3rd–4th century, around the same time as the earliest contemporary examples in Syria, suggesting either an Aksumite or Syrian origin for the type of arch. It was used in Spanish Visigothic architecture, Islamic architecture and mudéjar architecture, as in the Great Mosque of Damascus and in later Moorish buildings. It was used for decoration rather than for strength. Across the ocean in Mexico and Central America, Mesoamerican civilizations created various types of corbelled arches, such as with the interior tunnels in the Great Pyramid of Cholula and the many styles of corbelled arches built by the Mayan civilization. In Peru, the Inca civilization used a trapezoidal arch in their architecture. The arch is still used today in some modern structures such as bridges. Construction. An arch requires all of its elements to hold it together, raising the question of how an arch is constructed. One answer is to build a frame (historically, of wood) which exactly follows the form of the underside of the arch. This is known as a centre or centring. The voussoirs are laid on it until the arch is complete and self-supporting. For an arch higher than head height, scaffolding would in any case be required by the builders, so the scaffolding can be combined with the arch support. Occasionally arches would fall down when the frame was removed if construction or planning had been incorrect. (The A85 bridge at Dalmally, Scotland suffered this fate on its first attempt, in the 1940s). The interior and lower line or curve of an arch is known as the "intrados". Old arches sometimes need reinforcement due to decay of the keystones, known as bald arch. The gallery shows arch forms displayed in roughly the order in which they were developed. Technical aspects. The arch is significant because, in theory at least, it provides a structure which eliminates tensile stresses in spanning an open space. All the forces are resolved into compressive stresses. This is useful because several of the available building materials such as stone, cast iron and concrete can strongly resist compression but are very weak when tension, shear or torsional stress is applied to them. By using the arch configuration, significant spans can be achieved. This is because all the compressive forces hold it together in a state of equilibrium. This even applies to frictionless surfaces. However, one downside is that an arch pushes outward at the base, and this needs to be restrained in some way, either with heavy sides and friction or angled cuts into bedrock or similar. This same principle holds when the force acting on the arch is not vertical such as in spanning a doorway, but horizontal, such as in arched retaining walls or dams. Even when using concrete, where the structure may be monolithic, the principle of the arch is used so as to benefit from the concrete's strength in resisting compressive stress. Where any other form of stress is raised, it has to be resisted by carefully placed reinforcement rods or fibres. (See Arch bridge.) Other types. The Delicate Arch, a natural arch in Moab, UtahA blind arch is an arch infilled with solid construction so it cannot function as a window, door, or passageway. A dome is a three-dimensional application of the arch, rotated about the center axis. Igloos are notable vernacular structures making use of domes. Natural rock formations may also be referred to as arches. These natural arches are formed by erosion rather than being carved or constructed by man. See Arches National Park for examples. A special form of the arch is the triumphal arch, usually built to celebrate a victory in war. A famous example is the Arc de Triomphe in Paris, France. A vault is an application of the arch extended horizontally in two dimensions; the groin vault is the intersection of two vaults.