ratio of word probabilities predicted from brain for eye and window

close this window

eye

window

top 10 words in brain distribution (in article):
water form surface land region cause time type world zone
top 10 words in brain distribution (in article):
material wood build wall design structure construction size window type
top 10 words in brain distribution (not in article):
ice rock river sea wind ocean soil flow lake occur
top 10 words in brain distribution (not in article):
paint floor tree concrete brick space city shape manufacture leather
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under window
(words not in the model)
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomic. These two groups are not monophyletic; the cnidaira also possess cilliated cells, Pit eyes. Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pinhole eye. The pinhole eye is an "advanced" form of pit eye incorporating these improvements, most notably a small aperture (which may be adjustable) and deep pit. It is only found in the nautiloids. Without a lens to focus the image, it produces a blurry image, and will blur out a point to the size of the aperture. Consequently, nautiloids can't discriminate between objects with an angular separation of less than 11°. Shrinking the aperture would produce a sharper image, but let in less light. Spherical lensed eye. The resolution of pit eyes can be greatly improved by incorporating a material with a higher refractive index to form a lens, which may greatly reduce the blur radius encountered hence increasing the resolution obtainable. The most basic form, still seen in some gastropods and annelids, consists of a lens of one refractive index. A far sharper image can be obtained using materials with a high refractive index, decreasing to the edges this decreases the focal length and thus allows a sharp image to form on the retina. This also allows a larger aperture for a given sharpness of image, allowing more light to enter the lens; and a flatter lens, reducing spherical aberration. Such an inhomogeneous lens is necessary in order for the focal length to drop from about 4 times the lens radius, to 2.5 radii. Heterogeneous eyes have evolved at least eight times four or more times in gastropods, once in the copepods, once in the annelids and once in the cephalopods. No aquatic organisms possess homogeneous lenses; presumably the evolutionary pressure for a heterogeneous lens is great enough for this stage to be quickly "outgrown". This eye creates an image that is sharp enough that motion of the eye can cause significant blurring. To minimize the effect of eye motion while the animal moves, most such eyes have stabilizing eye muscles. The ocelli of insects bear a simple lens, but their focal point always lies behind the retina; consequently they can never form a sharp image. This capitulates the function of the eye. Ocelli (pit-type eyes of arthropods) blur the image across the whole retina, and are consequently excellent at responding to rapid changes in light intensity across the whole visual field this fast response is further accelerated by the large nerve bundles which rush the information to the brain. Focussing the image would also cause the sun's image to be focussed on a few receptors, with the possibility of damage under the intense light; shielding the receptors would block out some light and thus reduce their sensitivity. This fast response has led to suggestions that the ocelli of insects are used mainly in flight, because they can be used to detect sudden changes in which way is up (because light, especially UV light which is absorbed by vegetation, usually comes from above). Weaknesses. One weakness of this eye construction is that chromatic aberration is still quite high although for organisms without color vision, this is a very minor concern. A weakness of the vertebrate eye is the blind spot which results from a gap in the retina where the optic nerve exits at the back of the eye; the cephalopod eye has no blind spot as the retina is in the opposite orientation. Multiple lenses. Some marine organisms bear more than one lens; for instance the copeopod "Pontella" has three. The outer has a parabolic surface, countering the effects of spherical aberration while allowing a sharp image to be formed. "Copilla'"s eyes have two lenses, which move in and out like a telescope. Such arrangements are rare and poorly understood, but represent an interesting alternative construction. An interesting use of multiple lenses is seen in some hunters such as eagles and jumping spiders, which have a refractive cornea (discussed next): these have a negative lens, enlarging the observed image by up to 50% over the receptor cells, thus increasing their optical resolution. Refractive cornea. In the eyes of most terrestrial vertebrates (along with spiders and some insect larvae) the vitreous fluid has a higher refractive index than the air, relieving the lens of the function of reducing the focal length. This has freed it up for fine adjustments of focus, allowing a very high resolution to be obtained. As with spherical lenses, the problem of spherical aberration caused by the lens can be countered either by using an inhomogeneous lens material, or by flattening the lens. Flattening the lens has a disadvantage: the quality of vision is diminished away from the main line of focus, meaning that animals requiring all-round vision are detrimented. Such animals often display an inhomogeneous lens instead. As mentioned above, a refractive cornea is only useful out of water; in water, there is no difference in refractive index between the vitreous fluid and the surrounding water. Hence creatures which have returned to the water penguins and seals, for example lose their refractive cornea and return to lens-based vision. An alternative solution, borne by some divers, is to have a very strong cornea. Reflector eyes. An alternative to a lens is to line the inside of the eye with mirrors", and reflect the image to focus at a central point. The nature of these eyes means that if one were to peer into the pupil of an eye, one would see the same image that the organism would see, reflected back out. Many small organisms such as rotifers, copeopods and platyhelminths use such organs, but these are too small to produce usable images. Some larger organisms, such as scallops, also use reflector eyes. The scallop "Pecten" has up to 100 millimeter-scale reflector eyes fringing the edge of its shell. It detects moving objects as they pass successive lenses. Compound eyes. A compound eye may consist of thousands of individual photoreception units. The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarization of light. Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained. This can only be countered by increasing lens size and number to see with a resolution comparable to our simple eyes, humans would require compound eyes which would each reach the size of their head. Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form a single erect image. Compound eyes are common in arthropods, and are also present in annelids and some bivalved molluscs. Compound eyes, in arthropods at least, grow at their margins by the addition of new ommatidia. Apposition eyes. Apposition eyes are the most common form of eye, and are presumably the ancestral form of compound eye. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by "Limulus", the horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. (Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.) Apposition Pair of windows, Old Ship Church, Hingham, Massachusetts A window'" is an opening in a wall (or other solid and opaque surface) that allows the passage of light and, if not closed or sealed, air and sound. Windows are usually glazed or covered in some other transparent or translucent material. Windows are held in place by frames, which prevent them from collapsing in. Etymology. The word "Window" originates from the Old Norse ‘vindauga’, from ‘vindr wind’ and ‘auga eye’, i.e. "wind eye". In Norwegian Nynorsk and Icelandic the Old Norse form has survived to this day (in Icelandic only as a less used synonym to "gluggi"), while Swedish has kept it—mostly in dialects—as ‘vindöga’ (‘öga eye’). Danish ‘vindue’ and Norwegian Bokmål ‘vindu’ however, have lost the direct link to ‘eye’, just like "window" has. The Danish (but not the Bokmål) word is pronounced fairly similar to "window". "Window" is first recorded in the early 13th century, and originally referred to an unglazed hole in a roof. "Window" replaced the Old English ‘eagþyrl’, which literally means ‘eye-hole,’ and ‘eagduru’ ‘eye-door’. Many Germanic languages however adopted the Latin word ‘fenestra’ to describe a window with glass, such as standard Swedish ‘fönster’, or German ‘Fenster’. The use of "window" in English is probably due to the Scandinavian influence on the English language by means of loanwords during the Viking Age. In English the word "fenester" was used as a parallel until the mid-1700s and "fenestration" is still used to describe the arrangement of windows within a façade. Types in history. Primitive windows were just holes. Later, windows were covered with animal hide, cloth, or wood. Shutters that could be opened and closed came next. Over time, windows were built that both protected the inhabitants from the elements and transmitted light: mullioned glass windows, which joined multiple small pieces of glass with leading, paper windows, flattened pieces of translucent animal horn, and plates of thinly sliced marble. The Romans were the first to use glass for windows. In Alexandria ca. 100 AD, cast glass windows, albeit with poor optical properties, began to appear. Mullioned glass windows were the windows of choice among European well-to-do, whereas paper windows were economical and widely used in ancient China, Korea, Japan. In England, glass became common in the windows of ordinary homes only in the early 17th century whereas windows made up of panes of flattened animal horn were used as early as the 14th century in Northern Britain. Modern-style floor-to-ceiling windows became possible only after the industrial glass making process was perfected. Evidence of glass window panes in Italy dates back nearly 3000 years. Double-hung sash window. This sash window is the traditional style of window in the USA, and many other places that were formerly colonized by the UK, with two parts (sashes) that overlap slightly and slide up and down inside the frame. The two parts are not necessarily the same size. Nowadays, most new double-hung sash windows use spring balances to support the sashes, but traditionally, counterweights held in boxes either side of the window were used. These were and are attached to the sashes using pulleys of either braided cord or, later, purpose-made chain. Double-hung sash windows were traditionally often fitted with shutters. Sash windows may be fitted with simplex hinges which allow the window to be locked into hinges on one side, while the rope on the other side is detached, allowing the window to be opened for escape or cleaning. Single-hung sash window. One sash is movable (usually the bottom one) and the other fixed. This is the earlier form of sliding sash window, and is obviously also cheaper. Horizontal sliding sash window. Has two or more sashes that overlap slightly but slide horizontally within the frame. In the UK, these are sometimes called "Yorkshire" sash windows, presumably because of their traditional use in that county. Casement window. A window with a hinged sash that swings in or out like a door comprising either a side-hung, top-hung (also called "awning window"; see below), or occasionally bottom-hung sash or a combination of these types, sometimes with fixed panels on one or more sides of the sash. In the USA these are usually opened using a crank, but in Europe they tend to use projection friction stays and espagnolette locking. Formerly, plain hinges were used with a casement stay. Handing applies to casement windows to determine direction of swing. Awning window. An awning window is a casement window that is hung horizontally, hinged on top, so that it swings outward like an awning. Hopper window. A hopper window is a bottom hung casement window that opens similar to a draw bridge typically opening to the outside. Tilt and slide. A window (more usually a door-sized window) where the sash tilts inwards at the top and then slides horizontally behind the fixed pane. Tilt and turn. A window which can either tilt inwards at the top, or can open inwards hinged at the side. Transom window. A window above a door; if an exterior door the transom window is often fixed, if an interior door it can often open either by hinges at top or bottom, or can rotate about hinges at the middle of its sides. It provided ventilation before forced air heating and cooling. A transom may also be known as a fanlight, especially if it is fan-shaped, particularly in the British Isles. Jalousie window. Also known as a louvered window, the jalousie window is comprised of parallel slats of glass or acrylic that open and close like a Venetian blind, usually using a crank or a lever. They are used extensively in tropical architecture. A jalousie door is a door with a jalousie window. Clerestory window. A vertical window set in a roof structure or high in a wall, used for daylighting. Skylight. A flat or sloped window used for daylighting, built into a roof structure that is out of reach. Roof Window. A sloped window used for daylighting, built into a roof structure that is within reach. Roof Lantern or Cupola. A roof lantern is a multi-paned glass structure, resembling a small building, built on a roof for day or moon light. Sometimes includes an additional clerestory. May also be called a cupola. Bay window. A multi-panel window, with at least three panels set at different angles to create a protrusion from the wall line.it is commonly used in cold country where snow often falls. The panels are thus set in three different directions,from where a person would have a view from the interior of a building. Oriel window. A window with many panels. It is most often seen in the typical Tudor-style house and monasterie. An oriel window projects from the wall and does not extend to the ground. Oriel windows originated as a form of porch. They are often supported by brackets or corbels. Buildings in the Gothic Revival style often have oriell windows. Thermal window. Thermal, or Diocletian, windows are large semicircular windows (or niches) which are usually divided into three lights (window compartments) by two vertical mullions. The central compartment is often wider than the two side lights on either side of it. Fixed window. A window that cannot be opened, whose function is limited to allowing light to enter. Clerestory windows are often fixed. Transom windows may be fixed or operable. Picture window. A very large fixed window in a wall, typically without glazing bars, or glazed with only perfunctory glazing bars near the edge of the window. Picture windows are intended to provide an unimpeded view, as if framing a picture. Multi-lit window /divided-lite window. A window glazed with small panes of glass separated by wooden or lead "glazing bars", or "muntins", arranged in a decorative "glazing pattern" often dictated by the architectural style at use. Due to the historic unavailability of large panes of glass, this was the prevailing style of window until the beginning of the twentieth century, and is traditionally still used today. Emergency exit window /egress window. A window big enough and low enough so that occupants can escape through the opening in an emergency, such as a fire. In the United States, exact specifications for emergency windows in bedrooms are given in many building codes. Vehicles, such as buses and aircraft, frequently have emergency exit windows as well. Stained glass window. A window composed of pieces of colored glass, transparent or opaque, frequently portraying persons or scenes. Typically the glass in these windows is separated by lead glazing bars. Stained glass windows were popular in Victorian houses and some Wrightian houses, and are especially common in churches. French window. A French window, also known as a "French door" is really a type of door, but one which has one or more panes of glass set into the whole length of the door, meaning it also functions as a window. Super window. A popular term for highly insulating window with a heat loss so low it performs better than an insulated wall in winter, since the sunlight that it admits is greater than its heat loss over a 24 hour period. Technical terms. In insulated glass production, the term "lite" refers to a glass pane, several of which may be used to construct the final window product. For example, a sash unit, consisting of at least one sliding glass component, is typically composed of two lites, while a fixed window is composed of one lite. The terms "single-light", "double-light" etc refer to the number of these glass panes in a window. The lites in a window sash are divided horizontally and vertically by narrow strips of wood or metal called muntins. More substantial load bearing or structural vertical dividers are called mullions, with the corresponding horizontal dividers referred to as transoms. In the USA, the term "replacement window" means a framed window designed to slip inside the original window frame from the inside after the old sashes are removed. In Europe, however, it usually means a complete window including a replacement outer frame. The USA term "new construction window" means a window with a nailing fin designed to be inserted into a rough opening from the outside before applying siding and inside trim. A nailing fin is a projection on the outer frame of the window in the same plane as the glazing, which overlaps the prepared opening, and can thus be 'nailed' into place). In the UK and Europe, windows in new-build houses are usually fixed with long screws into expanding plastic plugs in the brickwork. A gap of up to 13mm is left around all four sides, and filled with expanding polyurethane foam. This makes the window fixing weatherproof but allows for expansion due to heat. A beam over the top of a window is known as the lintel or transom. In the USA, the NRFC Window Label lists the following terms: Window construction. Windows can be a significant source of heat transfer. Insulated glazing units therefore consist of two or more panes to reduce the heat transfer. Frame and sash construction. Frames and sashes can be made of the following materials: Composites may combine materials to obtain aesthetics of one material with the functional benefits of another. Glazing and filling. Low-emissivity coated panes reduce heat transfer by radiation, which, depending on which surface is coated, helps prevent heat loss (in cold climates) or heat gains (in warm climates). High thermal resistance can be obtained by evacuating or filling the insulated glazing units with gases such as argon or krypton, which reduces conductive heat transfer due to their low thermal conductivity. Performance of such units depends on good window seals and meticulous frame construction to prevent entry of air and loss of efficiency. Modern windows are usually glazed with one large sheet of glass per sash, while windows in the past were glazed with multiple panes separated by "glazing bars", or "muntins", due to the unavailability of large sheets of glass. Today, glazing bars tend to be decorative, separating windows into small panes of glass even though larger panes of glass are available, generally in a pattern dictated by the architectural style at use. Glazing bars are typically wooden, but occasionally lead glazing bars soldered in place are used for more intricate glazing patterns. Other construction details. Many windows have movable window coverings such as blinds or curtains to keep out light, provide additional insulation, or ensure privacy. Sun incidence angle. Historically, windows are designed with surfaces parallel to vertical building walls. Such a design allows considerable solar light and heat penetration due to the most commonly occurring incidence of sun angles. In passive solar building design, an extended eave is typically used to control the amount of solar light and heat entering the window(s). An alternate method would be to calculate a more optimum angle for mounting windows which accounts for summer sun load minimization, with consideration of the actual latitude of the particular building. An example where this process has been implemented is the Dakin Building, Brisbane, California; much of the fenestration has been designed to reflect summer heat load and assist in preventing summer interior over-illumination and glare, by designing window canting to achieve a near 45 degree angle. Solar window. Solar windows not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help generate electricity for the building. Windows and religion. The symbolism of windows plays a part in the customs and traditions of certain religions.