ratio of word probabilities predicted from brain for eye and fly

close this window

eye

fly

top 10 words in brain distribution (in article):
water form surface land region cause time type world zone
top 10 words in brain distribution (in article):
species human breed food produce body time size contain pet
top 10 words in brain distribution (not in article):
ice rock river sea wind ocean soil flow lake occur
top 10 words in brain distribution (not in article):
animal plant cat wolf male hunt wild dog female fruit
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under fly
(words not in the model)
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling True flies'" are insects of the Order "'Diptera'" (=two, and "pteron"= wing), possessing a single pair of wings on the mesothorax and a pair of halteres, derived from the hind wings, on the metathorax. The presence of a single pair of wings distinguishes true flies from other insects with "fly" in their name, such as mayflies, dragonflies, damselflies, stoneflies, whiteflies, fireflies, alderflies, dobsonflies, snakeflies, sawflies, caddisflies, butterflies or scorpionflies. Some true flies have become secondarily wingless, especially in the superfamily Hippoboscoidea, or among those that are inquilines in social insect colonies. Diptera is a large order, containing an estimated 240,000 species of mosquitos, gnats, midges and others, although under half of these (about 120,000 species) have been described. It is one of the major insect orders both in terms of ecological and human (medical and economic) importance. The Diptera, in particular the mosquitoes (Culicidae), are of great importance as disease transmitters, acting as vectors for malaria, dengue, West Nile virus, yellow fever, encephalitis and other infectious diseases. Classification. There are two generally accepted suborders of Diptera. The Nematocera are usually recognized by their elongated bodies and feathery antennae as represented by mosquitoes and crane flies. The Brachycera tend to have a more roundly proportioned body and very short antennae. A more recent classification has been proposed in which the Nematocera is split into two suborders, the Archidiptera and the Eudiptera, but this has not yet gained widespread acceptance among dipterists. Most of the Muscomorpha are further subdivided into the Acalyptratae and Calyptratae based on whether or not they have a calypter (a wing flap that extends over the halteres). Beyond that, considerable revision in the taxonomy of the flies has taken place since the introduction of modern cladistic techniques, and much remains uncertain. The secondary ranks between the suborders and the families are more out of practical or historical considerations than out of any strict respect for phylogenetic classifications (some modern cladists tend to spurn the use of Linnaean rank names). Nearly all classifications in use now, including this article, contain some paraphyletic groupings; this is emphasized where the numerous alternative systems are most greatly at odds. See list of families of Diptera. Dipterans belong to the group Mecopterida, that also contains Mecoptera, Siphonaptera, Lepidoptera (butterflies and moths) and Trichoptera. Inside it, they are sometimes classified closely together with Mecoptera and Siphonaptera in the superorder Antliophora. Evolution. Diptera are usually thought to derive from Mecoptera or a strictly related group. First true dipterans are known from the Middle Triassic, becoming widespread during the Middle and Late Triassic . Flies in culture. Flies have often been used in mythology and literature to represent agents of death and decay, such as the Biblical fourth plague of Egypt, or portrayed as nuisances (e.g., in Greek mythology, Myiagros was a god who chased away flies during the sacrifices to Zeus and Athena, and Zeus sent a fly to bite the horse Pegasus causing Bellerophon to fall back to Earth when he attempted to ride to Mount Olympus), though in a few cultures the connotation is not so negative (e.g., in the traditional Navajo religion, Big Fly is an important spirit being). Emily Dickinson's poem "I Heard a Fly Buzz When I Died" also makes reference to flies in the context of death. Not surprisingly, in art and entertainment, flies are also used primarily to introduce elements of horror or the simply mundane; an example of the former is the 1958 science fiction film "The Fly" (remade in 1986), in which a scientist accidentally exchanges parts of his body with those of a fly. Examples of the latter include trompe l'oeil paintings of the fifteenth century such as "Portrait of a Carthusian" by Petrus Christus, showing a fly sitting on a fake frame , a 2001 art project by Garnet Hertz in which a complete web server was implanted into a dead fly, and various musical works (such as Yoko Ono's album "Fly", U2's song "The Fly," Dave Matthews' song "The Fly" and Béla Bartók's "From the Diary of a Fly"). The ability of flies to cling to almost any surface has also inspired the title of "Human Fly" for stunt performers whose stunts involve climbing buildings, including both real life and fictional individuals. Aside from the fictional and conceptual role flies play in culture, there are practical roles that flies can play (e.g., flies are reared in large numbers in Japan to serve as pollinators of sunflowers in greenhouses), especially the maggots of various species. Maggots. Some types of maggots found on corpses can be of great use to forensic scientists. By their stage of development, these maggots can be used to give an indication of the time elapsed since death, as well as the place the organism died. Maggot species can be identified through the Use of DNA in forensic entomology. The size of the house fly maggot is 10–20 mm (⅜–¾ in). At the height of the summer season, a generation of flies (egg to adult) may be produced in 12–14 days. Other types of maggots are bred commercially, as a popular bait in angling, and a food for carnivorous pets such as reptiles or birds. Maggots have been used in medicine to clean out necrotic wounds , and in food production, particularly of cheeses (casu marzu).