ratio of word probabilities predicted from brain for eye and chair

close this window

eye

chair

top 10 words in brain distribution (in article):
water form surface land region cause time type world zone
top 10 words in brain distribution (in article):
material wood design woman type form size time century people
top 10 words in brain distribution (not in article):
ice rock river sea wind ocean soil flow lake occur
top 10 words in brain distribution (not in article):
light drink lamp love build wear horse paint sexual wine
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chair
(words not in the model)
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomic. These two groups are not monophyletic; the cnidaira also possess cilliated cells, Pit eyes. Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pinhole eye. The pinhole eye is an "advanced" form of pit eye incorporating these improvements, most notably a small aperture (which may be adjustable) and deep pit. It is only found in the nautiloids. Without a lens to focus the image, it produces a blurry image, and will blur out a point to the size of the aperture. Consequently, nautiloids can't discriminate between objects with an angular separation of less than 11°. Shrinking the aperture would produce a sharper image, but let in less light. Spherical lensed eye. The resolution of pit eyes can be greatly improved by incorporating a material with a higher refractive index to form a lens, which may greatly reduce the blur radius encountered hence increasing the resolution obtainable. The most basic form, still seen in some gastropods and annelids, consists of a lens of one refractive index. A far sharper image can be obtained using materials with a high refractive index, decreasing to the edges this decreases the focal length and thus allows a sharp image to form on the retina. This also allows a larger aperture for a given sharpness of image, allowing more light to enter the lens; and a flatter lens, reducing spherical aberration. Such an inhomogeneous lens is necessary in order for the focal length to drop from about 4 times the lens radius, to 2.5 radii. Heterogeneous eyes have evolved at least eight times four or more times in gastropods, once in the copepods, once in the annelids and once in the cephalopods. No aquatic organisms possess homogeneous lenses; presumably the evolutionary pressure for a heterogeneous lens is great enough for this stage to be quickly "outgrown". This eye creates an image that is sharp enough that motion of the eye can cause significant blurring. To minimize the effect of eye motion while the animal moves, most such eyes have stabilizing eye muscles. The ocelli of insects bear a simple lens, but their focal point always lies behind the retina; consequently they can never form a sharp image. This capitulates the function of the eye. Ocelli (pit-type eyes of arthropods) blur the image across the whole retina, and are consequently excellent at responding to rapid changes in light intensity across the whole visual field this fast response is further accelerated by the large nerve bundles which rush the information to the brain. Focussing the image would also cause the sun's image to be focussed on a few receptors, with the possibility of damage under the intense light; shielding the receptors would block out some light and thus reduce their sensitivity. This fast response has led to suggestions that the ocelli of insects are used mainly in flight, because they can be used to detect sudden changes in which way is up (because light, especially UV light which is absorbed by vegetation, usually comes from above). Weaknesses. One weakness of this eye construction is that chromatic aberration is still quite high although for organisms without color vision, this is a very minor concern. A weakness of the vertebrate eye is the blind spot which results from a gap in the retina where the optic nerve exits at the back of the eye; the cephalopod eye has no blind spot as the retina is in the opposite orientation. Multiple lenses. Some marine organisms bear more than one lens; for instance the copeopod "Pontella" has three. The outer has a parabolic surface, countering the effects of spherical aberration while allowing a sharp image to be formed. "Copilla'"s eyes have two lenses, which move in and out like a telescope. Such arrangements are rare and poorly understood, but represent an interesting alternative construction. An interesting use of multiple lenses is seen in some hunters such as eagles and jumping spiders, which have a refractive cornea (discussed next): these have a negative lens, enlarging the observed image by up to 50% over the receptor cells, thus increasing their optical resolution. Refractive cornea. In the eyes of most terrestrial vertebrates (along with spiders and some insect larvae) the vitreous fluid has a higher refractive index than the air, relieving the lens of the function of reducing the focal length. This has freed it up for fine adjustments of focus, allowing a very high resolution to be obtained. As with spherical lenses, the problem of spherical aberration caused by the lens can be countered either by using an inhomogeneous lens material, or by flattening the lens. Flattening the lens has a disadvantage: the quality of vision is diminished away from the main line of focus, meaning that animals requiring all-round vision are detrimented. Such animals often display an inhomogeneous lens instead. As mentioned above, a refractive cornea is only useful out of water; in water, there is no difference in refractive index between the vitreous fluid and the surrounding water. Hence creatures which have returned to the water penguins and seals, for example lose their refractive cornea and return to lens-based vision. An alternative solution, borne by some divers, is to have a very strong cornea. Reflector eyes. An alternative to a lens is to line the inside of the eye with mirrors", and reflect the image to focus at a central point. The nature of these eyes means that if one were to peer into the pupil of an eye, one would see the same image that the organism would see, reflected back out. Many small organisms such as rotifers, copeopods and platyhelminths use such organs, but these are too small to produce usable images. Some larger organisms, such as scallops, also use reflector eyes. The scallop "Pecten" has up to 100 millimeter-scale reflector eyes fringing the edge of its shell. It detects moving objects as they pass successive lenses. Compound eyes. A compound eye may consist of thousands of individual photoreception units. The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarization of light. Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained. This can only be countered by increasing lens size and number to see with a resolution comparable to our simple eyes, humans would require compound eyes which would each reach the size of their head. Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form a single erect image. Compound eyes are common in arthropods, and are also present in annelids and some bivalved molluscs. Compound eyes, in arthropods at least, grow at their margins by the addition of new ommatidia. Apposition eyes. Apposition eyes are the most common form of eye, and are presumably the ancestral form of compound eye. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by "Limulus", the horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. (Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.) Apposition eyes work by gathering a number of images, one from each eye, and combining them in the brain, with each eye typically contributing a single point of information. The typical apposition eye has a lens focusing light from one direction on the rhabdom, while light from other directions is absorbed by the dark wall of the ommatidium. In the other kind of apposition eye, found in the A chair'" is used to sit on, commonly for use by one person. Chairs often have the seat raised above floor level, supported by four legs. A back or arm rests in a "'stool'", or when raised up, a bar stool (adults) or high chair (young children). A chair with arms is an "'armchair'" and with folding action and inclining footrest, a recliner. A permanently fixed chair in a train or theater is a "'seat'" or airline seat; when riding, it is a saddle and bicycle saddle, and for an automobile, a car seat or infant car seat. With wheels it is a wheelchair and when hung from above, a swing. The design may be made of porous materials, or be drilled with holes for decoration; a low back or gaps can provide ventilation. The back may extend above the height of the occupant's head, which can optionally contain a "headrest". A chair for more than one person is a couch, sofa, settee, or "loveseat"; or a bench. A separate footrest for a chair is known as an "ottoman", "hassock" or "pouffe". History of the Chair. The chair is of extreme antiquity. Although for many centuries and indeed for 1000s of years it was an article of state and dignity rather than an article of ordinary use. "The chair" is still extensively used as the emblem of authority in the House of Commons in the United Kingdom and Canada, and in many other settings. Committees, boards of directors, and academic departments all have a 'chairperson'. Endowed professorships are referred to as chairs. It was not, in fact, until the 16th century that it became common anywhere. The chest, the bench and the stool were until then the ordinary seats of everyday life, and the number of chairs which have survived from an earlier date is exceedingly limited; most of such examples are of ecclesiastical or seigneurial origin. Our knowledge of the chairs of remote antiquity is derived almost entirely from monuments, sculpture and paintings. A few actual examples exist in the British Museum, in the Egyptian Museum at Cairo, and elsewhere. In ancient Egypt chairs appear to have been of great richness and splendor. Fashioned of ebony and ivory, or of carved and gilded wood, they were covered with costly materials, magnificent patterns and supported upon representations of the legs of beasts or the figures of captives. The earliest known form of Greek chair, going back to five or six centuries BCE, had a back but stood straight up, front and back. During Tang dynasty (618- 907 AD), a higher seat first started to appear amongst the Chinese elite and their usage soon spread to all levels of society. By the 12th century seating on the floor was rare in China, unlike in other Asian countries where the custom continued, and the chair, or more commonly the stool, was used in the vast majority of houses throughout the country. In Europe, it was owing in great measure to the Renaissance that the chair ceased to be a privilege of state, and became a standard item of furniture whoever could afford to buy it. Once the idea of privilege faded the chair speedily came into general use. We find almost at once that the chair began to change every few years to reflect the fashions of the hour. The 20th century saw an increasing use of technology in chair construction with such things as all-metal folding chairs, metal-legged chairs, the Slumber Chair, moulded plastic chairs and ergonomic chairs. The recliner became a popular form, at least in part due to radio and television, and later a two-part. The modern movement of the 1960s produced new forms of chairs: the butterfly chair, bean bags, and the egg-shaped pod chair. Technological advances led to molded plywood and wood laminate chairs, as well as chairs made of leather or polymers. Mechanical technology incorporated into the chair enabled adjustable chairs, especially for office use. Motors embedded in the chair resulted in massage chairs. Design and ergonomics. Chair design considers intended usage, ergonomics (how comfortable it is for the occupant), as well as non-ergonomic functional requirements such as size, stack ability, fold ability, weight, durability, stain resistance and artistic design. Intended usage determines the desired seating position. "Task chairs", or any chair intended for people to work at a desk or table, including dining chairs, can only recline very slightly; otherwise the occupant is too far away from the desk or table. Dental chairs are necessarily reclined. Easy chairs for watching television or movies are somewhere in between depending on the height of the screen. Ergonomic design distributes the weight of the occupant to various parts of the body. A seat that is higher results in dangling feet and increased pressure on the underside of the knees ("popliteal fold"). It may also result in no weight on the feet which means more weight elsewhere. A lower seat may shift too much weight to the "seat bones" ("ischial tuberosities"). A reclining seat and back will shift weight to the occupant's back. This may be more comfortable for some in reducing weight on the seat area, but may be problematic for others who have bad backs. In general, if the occupant is supposed to sit for a long time, weight needs to be taken off the seat area and thus "easy" chairs intended for long periods of sitting are generally at least slightly reclined. However, reclining may not be suitable for chairs intended for work or eating at table. The back of the chair will support some of the weight of the occupant, reducing the weight on other parts of the body. In general, backrests come in three heights: Lower back backrests support only the lumbar region. Shoulder height backrests support the entire back and shoulders. Headrests support the head as well and are important in vehicles for preventing "whiplash" neck injuries in rear-end collisions where the head is jerked back suddenly. Reclining chairs typically have at least shoulder height backrests to shift weight to the shoulders instead of just the lower back. Some chairs have foot rests. A stool or other simple chair may have a simple straight or curved bar near the bottom for the sitter to place his or her feet on. A kneeling chair adds an additional body part, the knees, to support the weight of the body. A sit-stand chair distributes most of the weight of the occupant to the feet. Many chairs are padded or have cushions. Padding can be on the seat of the chair only, on the seat and back, or also on any arm rests and or foot rest the chair may have. Padding will not shift the weight to different parts of the body (unless the chair is so soft that the shape is altered). However, padding does distribute the weight by increasing the area of contact between the chair and the body. A hard wood chair feels hard because the contact point between the occupant and the chair is small. The same body weight over a smaller area means greater pressure on that area. Spreading the area reduces the pressure at any given point. In lieu of padding, flexible materials, such as wicker, may be used instead with similar effects of distributing the weight. Since most of the body weight is supported in the back of the seat, padding there should be firmer than the front of the seat which only has the weight of the legs to support. Chairs that have padding that is the same density front and back will feel soft in the back area and hard to the underside of the knees. There may be cases where padding is not desirable. For example, in chairs that are intended primarily for outdoor use. Where padding is not desirable, contouring may be used instead. A contoured seat pan attempts to distribute weight without padding. By matching the shape of the occupant's buttocks, weight is distributed and maximum pressure is reduced. Actual chair dimensions are determined by measurements of the human body or anthropometric measurements. The two most relevant anthropometric measurement for chair design is the popliteal height and buttock popliteal length. For someone seated, the popliteal height is the distance from the underside of the foot to the underside of the thigh at the knees. It is sometimes called the "stool height." The term "sitting height" is reserved for the height to the top of the head when seated. For American men, the median popliteal height is 16.3 inches and for American women it is 15.0 inches. The popliteal height, after adjusting for heels, clothing and other issues is used to determine the height of the chair seat. Mass produced chairs are typically 17 inches high. For someone seated, the buttock popliteal length is the horizontal distance from the back most part of the buttocks to the back of the lower leg. This anthropometric measurement is used to determine the seat depth. Mass produced chairs are typically 15-17 inches deep. Additional anthropometric measurements may be relevant to designing a chair. Hip breadth is used for chair width and armrest width. Elbow rest height is used to determine the height of the armrests. The buttock-knee length is used to determine "leg room" between rows of chairs. "Seat pitch" is the distance between rows of seats. In some airplanes and stadiums the leg room (the seat pitch less the thickness of the seat at thigh level) is so small that it is sometimes insufficient for the average person. For adjustable chairs, such as an office chair, the aforementioned principles are applied in adjusting the chair to the individual occupant. Armrests===. A chair may or may not have armrests; chairs with armrests are termed "armchairs". In French, a distinction is made between "fauteuil" and "chaise", the terms for chairs with and without armrests, respectively. If present, armrests will support part of the body weight through the arms if the arms are resting on the armrests. Armrests further have the function of making entry and exit from the chair easier (but from the side it becomes more difficult). Armrests should support the forearm and not the sensitive elbow area. Hence in some chair designs, the armrest is not continuous to the chair back, but is missing in the elbow area. A couch, bench, or other arrangement of seats next to each other may have armrest at the sides and or arm rests in between. The latter may be provided for comfort, but also for privacy e.g. in public transport and other public places, and to prevent lying on the bench. Arm rests reduce both desired and undesired proximity. A loveseat in particular, has "no" armrest in between. See also seats in movie theaters, and pictures of benches with and without arm rests. Chair seats. Chair seats vary widely in construction and may or may not match construction of the chair's back (backrest). Standards and specifications. Design considerations for chairs have been codified into standards. ISO 9241, "Ergonomic requirements for office work with visual display terminals (VDTs) Part 5: Workstation layout and postural requirements" is the most common one for modern chair design. There are multiple specific standards for different types of chairs. Dental chairs are specified by ISO 6875. Bean bag chairs are specified by ANSI standard ASTM F1912-98. ISO 7174 specifies stability of rocking and tilting chairs. ASTM F1858-98 specifies plastic lawn chairs. ASTM E1822-02b defines the combustibility of chairs when they are stacked. The Business and Institutional Furniture Manufacturer's Association (BIFMA) defines BIFMA X5.1 for testing of commercial-grade chairs. It specifies things like: The specification further defines heavier "proof" loads that chairs must withstand. Under these higher loads, the chair may be damaged, but it must not fail catastrophically. Large institutions that make bulk purchases will reference these standards within their own even more detailed criteria for purchase. Governments will often issue standards for purchases by government agencies (e.g. Canada's Canadian General Standards Board CAN CGSB 44.15M on "Straight Stacking Chair, Steel" or CAN CGSB 44.232-2002 on "Task Chairs for Office Work with Visual Display Terminal"). Accessories. In place of a built-in footrest, some chairs come with a matching ottoman'". An ottoman is a short stool intended to be used as a footrest but can sometimes be used as a stool. If matched to a glider, the ottoman may be mounted on swing arms so that the ottoman rocks back and forth with the main glider. A "'chair cover'" is a temporary fabric cover for a side chair. They are typically rented for formal events such as wedding receptions to increase the attractiveness of the chairs and decor. The chair covers may come with decorative chair ties, a ribbon to be tied as a bow behind the chair. Covers for sofas and couches are also available for homes with small children and pets. In the second half of 20th century, some people used custom clear plastic covers for expensive sofas and chairs to protect them. "'Chair pads'" are cushions for chairs. Some are decorative. In cars, they may be used to increase the height of the driver. Orthopedic backrests provide support for the back. Some manufacturers have patents on their designs and are recognized by medical associations as beneficial. Car seats sometimes have built-in and adjustable lumbar supports. "'Chair mats'" are plastic mats meant to cover carpet. This allows chairs on wheels to roll easily over the carpet and it protects the carpet. They come in various shapes, some specifically sized to fit partially under a desk. "'Remote control bags'" can be draped over the arm of easy chairs or sofas and used to hold remote controls. They are counter-weighted so as to not slide off the arms under the weight of the remote control. "'Chair glides'" are attached to the feet of chairs to prevent them from scratching or snagging on the floor.