eye |
ant |
top 10 words in brain distribution (in article): water form surface land region cause time type world zone |
top 10 words in brain distribution (in article): animal species breed human hunt male plant bear food population |
top 10 words in brain distribution (not in article): ice rock river sea ocean wind soil flow lake occur |
top 10 words in brain distribution (not in article): cat wolf wild dog lion elephant tiger deer hybrid pet |
times more probable under eye 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under ant (words not in the model) | |
Eyes'" are organs that detect light, and send signals along the optic nerve to the visual and other areas of the brain. Complex optical systems with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in cnidaria, mollusks, chordates, annelids and arthropods. The simplest "eyes", in even unicellular organisms, do nothing but detect whether the surroundings are light or dark, which is sufficient for the entrainment of circadian rhythms. From more complex eyes, retinal photosensitive ganglion cells send signals along the retinohypothalamic tract to the suprachiasmatic nuclei to effect circadian adjustment. Overview. Complex eyes can distinguish shapes and colors. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception; in other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses. The first proto-eyes evolved among animals 540 million years ago, about the time of the so-called Cambrian explosion. The last common ancestor of animals possessed the biochemical toolkit necessary for vision, and more advanced eyes have evolved in 96% of animal species in 6 of the thirty-something main phyla. In most vertebrates and some mollusks, the eye works by allowing light to enter it and project onto a light-sensitive panel of cells, known as the retina, at the rear of the eye. The cone cells (for color) and the rod cells (for low-light contrasts) in the retina detect and convert light into neural signals for vision. The visual signals are then transmitted to the brain via the optic nerve. Such eyes are typically roughly spherical, filled with a transparent gel-like substance called the vitreous humour, with a focusing lens and often an iris; the relaxing or tightening of the muscles around the iris change the size of the pupil, thereby regulating the amount of light that enters the eye, and reducing aberrations when there is enough light. The eyes of cephalopods, fish, amphibians and snakes usually have fixed lens shapes, and focusing vision is achieved by telescoping the lens — similar to how a camera focuses. Compound eyes are found among the arthropods and are composed of many simple facets which, depending on the details of anatomy, may give either a single pixelated image or multiple images, per eye. Each sensor has its own lens and photosensitive cell(s). Some eyes have up to 28,000 such sensors, which are arranged hexagonally, and which can give a full 360-degree field of vision. Compound eyes are very sensitive to motion. Some arthropods, including many Strepsiptera, have compound eyes of only a few facets, each with a retina capable of creating an image, creating vision. With each eye viewing a different thing, a fused image from all the eyes is produced in the brain, providing very different, high-resolution images. Possessing detailed hyperspectral color vision, the Mantis shrimp has been reported to have the world's most complex color vision system. Trilobites, which are now extinct, had unique compound eyes. They used clear calcite crystals to form the lenses of their eyes. In this, they differ from most other arthropods, which have soft eyes. The number of lenses in such an eye varied, however: some trilobites had only one, and some had thousands of lenses in one eye. In contrast to compound eyes, simple eyes are those that have a single lens. For example, jumping spiders have a large pair of simple eyes with a narrow field of view, supported by an array of other, smaller eyes for peripheral vision. Some insect larvae, like caterpillars, have a different type of simple eye (stemmata) which gives a rough image. Some of the simplest eyes, called ocelli, can be found in animals like some of the snails, which cannot actually "see" in the normal sense. They do have photosensitive cells, but no lens and no other means of projecting an image onto these cells. They can distinguish between light and dark, but no more. This enables snails to keep out of direct sunlight. In organisms dwelling near deep-sea vents, compound eyes have been secondarily simplified and adapted to spot the infra-red light produced by the hot vents in this way the bearers can spot hot springs and avoid being boiled alive. Evolution. Visual pigments appear to have a common ancestor and were probably involved in circadian rhythms or reproductive timing in simple organisms. Complex vision, associated with dedicated visual organs, or eyes, evolved many times in different lineages. Types of eye. Nature has produced ten different eye layouts — indeed every way of capturing an image has evolved at least once in nature, with the exception of zoom and Fresnel lenses. Eye types can be categorized into "simple eyes", with one concave chamber, and "compound eyes", which comprise a number of individual lenses laid out on a convex surface. Note that "simple" does not imply a reduced level of complexity or acuity. Indeed, any eye type can be adapted for almost any behaviour or environment. The only limitations specific to eye types are that of resolution — the physics of compound eyes prevents them from achieving a resolution better than 1°. Also, superposition eyes can achieve greater sensitivity than apposition eyes, so are better suited to dark-dwelling creatures. Eyes also fall into two groups on the basis of their photoreceptor's cellular construction, with the photoreceptor cells either being cilliated (as in the vertebrates) or rhabdomic. These two groups are not monophyletic; the cnidaira also possess cilliated cells, Pit eyes. Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material. Pinhole eye. The pinhole eye is an "advanced" form of pit eye incorporating these improvements, most notably a small aperture (which may be adjustable) and deep pit. It is only found in the nautiloids. Without a lens to focus the image, it produces a blurry image, and will blur out a point to the size of the aperture. Consequently, nautiloids can't discriminate between objects with an angular separation of less than 11°. Shrinking the aperture would produce a sharper image, but let in less light. Spherical lensed eye. The resolution of pit eyes can be greatly improved by incorporating a material with a higher refractive index to form a lens, which may greatly reduce the blur radius encountered — hence increasing the resolution obtainable. The most basic form, still seen in some gastropods and annelids, consists of a lens of one refractive index. A far sharper image can be obtained using materials with a high refractive index, decreasing to the edges — this decreases the focal length and thus allows a sharp image to form on the retina. This also allows a larger aperture for a given sharpness of image, allowing more light to enter the lens; and a flatter lens, reducing spherical aberration. Such an inhomogeneous lens is necessary in order for the focal length to drop from about 4 times the lens radius, to 2.5 radii. Heterogeneous eyes have evolved at least eight times — four or more times in gastropods, once in the copepods, once in the annelids and once in the cephalopods. No aquatic organisms possess homogeneous lenses; presumably the evolutionary pressure for a heterogeneous lens is great enough for this stage to be quickly "outgrown". This eye creates an image that is sharp enough that motion of the eye can cause significant blurring. To minimize the effect of eye motion while the animal moves, most such eyes have stabilizing eye muscles. The ocelli of insects bear a simple lens, but their focal point always lies behind the retina; consequently they can never form a sharp image. This capitulates the function of the eye. Ocelli (pit-type eyes of arthropods) blur the image across the whole retina, and are consequently excellent at responding to rapid changes in light intensity across the whole visual field — this fast response is further accelerated by the large nerve bundles which rush the information to the brain. Focussing the image would also cause the sun's image to be focussed on a few receptors, with the possibility of damage under the intense light; shielding the receptors would block out some light and thus reduce their sensitivity. This fast response has led to suggestions that the ocelli of insects are used mainly in flight, because they can be used to detect sudden changes in which way is up (because light, especially UV light which is absorbed by vegetation, usually comes from above). Weaknesses. One weakness of this eye construction is that chromatic aberration is still quite high — although for organisms without color vision, this is a very minor concern. A weakness of the vertebrate eye is the blind spot which results from a gap in the retina where the optic nerve exits at the back of the eye; the cephalopod eye has no blind spot as the retina is in the opposite orientation. Multiple lenses. Some marine organisms bear more than one lens; for instance the copeopod "Pontella" has three. The outer has a parabolic surface, countering the effects of spherical aberration while allowing a sharp image to be formed. "Copilla'"s eyes have two lenses, which move in and out like a telescope. Such arrangements are rare and poorly understood, but represent an interesting alternative construction. An interesting use of multiple lenses is seen in some hunters such as eagles and jumping spiders, which have a refractive cornea (discussed next): these have a negative lens, enlarging the observed image by up to 50% over the receptor cells, thus increasing their optical resolution. Refractive cornea. In the eyes of most terrestrial vertebrates (along with spiders and some insect larvae) the vitreous fluid has a higher refractive index than the air, relieving the lens of the function of reducing the focal length. This has freed it up for fine adjustments of focus, allowing a very high resolution to be obtained. As with spherical lenses, the problem of spherical aberration caused by the lens can be countered either by using an inhomogeneous lens material, or by flattening the lens. Flattening the lens has a disadvantage: the quality of vision is diminished away from the main line of focus, meaning that animals requiring all-round vision are detrimented. Such animals often display an inhomogeneous lens instead. As mentioned above, a refractive cornea is only useful out of water; in water, there is no difference in refractive index between the vitreous fluid and the surrounding water. Hence creatures which have returned to the water — penguins and seals, for example — lose their refractive cornea and return to lens-based vision. An alternative solution, borne by some divers, is to have a very strong cornea. Reflector eyes. An alternative to a lens is to line the inside of the eye with mirrors", and reflect the image to focus at a central point. The nature of these eyes means that if one were to peer into the pupil of an eye, one would see the same image that the organism would see, reflected back out. Many small organisms such as rotifers, copeopods and platyhelminths use such organs, but these are too small to produce usable images. Some larger organisms, such as scallops, also use reflector eyes. The scallop "Pecten" has up to 100 millimeter-scale reflector eyes fringing the edge of its shell. It detects moving objects as they pass successive lenses. Compound eyes. A compound eye may consist of thousands of individual photoreception units. The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarization of light. Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained. This can only be countered by increasing lens size and number — to see with a resolution comparable to our simple eyes, humans would require compound eyes which would each reach the size of their head. Compound eyes fall into two groups: apposition eyes, which form multiple inverted images, and superposition eyes, which form a single erect image. Compound eyes are common in arthropods, and are also present in annelids and some bivalved molluscs. Compound eyes, in arthropods at least, grow at their margins by the addition of new ommatidia. Apposition eyes. Apposition eyes are the most common form of eye, and are presumably the ancestral form of compound eye. They are found in all arthropod groups, although they may have evolved more than once within this phylum. Some annelids and bivalves also have apposition eyes. They are also possessed by "Limulus", the horseshoe crab, and there are suggestions that other chelicerates developed their simple eyes by reduction from a compound starting point. (Some caterpillars appear to have evolved compound eyes from simple eyes in the opposite fashion.) Apposition eyes work by gathering a number of images, one from each eye, and combining them in the brain, with each eye typically contributing a single point of information. The typical apposition eye has a lens focusing light from one direction on the rhabdom, while light from other directions is absorbed by the dark wall of the ommatidium. In the other kind of apposition eye, found in the Strepsiptera, lenses are not fused to one another, and each forms an entire image; these images are combined in the brain. This is called the schizochroal compound eye or the neural superposition eye. Because images are combined additively, this arrangement allows vision under lower light levels. Superposition eyes. The second type is named the superposition eye. The superposition eye is divided into three types; the refracting, the reflecting and the parabolic superposition eye. The refracting superposition eye has a gap between the lens and the rhabdom, and no side wall. Each lens takes light at an angle to its axis and reflects it to the same angle on the other side. The result is an image at half the radius of the eye, which is where the tips of the rhabdoms are. This kind is used mostly by nocturnal insects. In the parabolic superposition compound eye type, seen in arthropods such as mayflies, the parabolic surfaces of the inside of each facet focus light from a reflector to a sensor array. Long-bodied decapod crustaceans such as shrimp, prawns, crayfish and lobsters are alone in having reflecting superposition eyes, which also has a transparent gap but uses corner mirrors instead of lenses. Parabolic superposition. This eye type functions by refracting light, then using a parabolic mirror to focus the image; it combines features of superposition and apposition eyes. Other. Good fliers like flies or honey bees, or prey-catching insects like praying mantis or dragonflies, have specialized zones of ommatidia organized into a fovea area which gives acute vision. In the acute zone the eye are flattened and the facets larger. The flattening allows more ommatidia to receive light from a spot and therefore higher resolution. There are some exceptions from the types mentioned above. Some insects have a so-called single lens compound eye, a transitional type which is something between a superposition type of the multi-lens compound eye and the single lens eye found in animals with simple eyes. Then there is the mysid shrimp "Dioptromysis paucispinosa". The shrimp has an eye of the refracting superposition type, in the rear behind this in each eye there is a single large facet that is three times in diameter the others in the eye and behind this is an enlarged crystalline cone. This projects an upright image on a specialized retina. The resulting eye is a mixture of a simple eye within a compound eye. Another version is the pseudofaceted eye, as seen in Scutigera. This type of eye consists of a cluster of numerous ocelli on each side of the head, organized in a way that resembles a true compound eye. The body of "Ophiocoma wendtii", a type of brittle star, is covered with ommatidia, turning its whole skin into a compound eye. The same is true of many chitons. Relationship to lifestyle. Eyes are generally adapted to the environment and lifestyle of the organism which bears them. For instance, the distribution of photoreceptors tends to match the area in which the highest acuity is required, with horizon-scanning organisms, such as those that live on the African plains, having a horizontal line of high-density ganglia, while tree-dwelling creatures which require good all-round vision tend to have a symmetrical distribution of ganglia, with acuity decreasing outwards from the centre. Of course, for most eye types, it is impossible to diverge from a spherical form, so only the density of optical receptors can be altered. In organisms with compound eyes, it is the number of ommatidia rather than ganglia that reflects the region of highest data acquisition. Optical superposition eyes are constrained to a spherical shape, but other forms of compound eyes may deform to a shape where more ommatidia are aligned to, say, the horizon, without altering the size or density of individual ommatidia. Eyes of horizon-scanning organisms have stalks so they can be easily aligned to the horizon when this is inclined, for example if the animal is on a slope. An extension of this concept is that the eyes of predators typically have a zone of very acute vision at their centre, to assist in the identification of prey. In deep water organisms, it may not be the centre of the eye that is enlarged. The hyperiid amphipods are deep water animals that feed on organisms above them. Their eyes are almost divided into two, with the upper region thought to be involved in detecting the silhouettes of potential prey — or predators — against the faint light of the sky above. Accordingly, deeper water hyperiids, where the light against which the silhouettes must be compared is dimmer, have larger "upper-eyes", and may lose the lower portion of their eyes altogether. Depth perception can be enhanced by having eyes which are enlarged in one direction; distorting the eye slightly allows the distance to the object to be estimated with a high degree of accuracy. Acuity is higher among male organisms that mate in mid-air, as they need to be able to spot and assess potential mates against a very large backdrop. On the other hand, the eyes of organisms which operate in low light levels, such as around dawn and dusk or in deep water, tend to be larger to increase the amount of light that can be captured. It is not only the shape of the eye that may be affected by lifestyle. Eyes can be the most visible parts of organisms, and this can act as a pressure on organisms to have more transparent eyes at the cost of function. Eyes may be mounted on stalks to provide better all-round vision, by lifting them above an organism's carapace; this also allows them to track predators or prey without moving the head. Acuity. Visual acuity is often measured in cycles per degree (CPD), which measures an angular resolution, or how much an eye can differentiate one object from another in terms of visual angles. Resolution in CPD can be measured by bar charts of different numbers of white — black stripe cycles. For example, if each pattern is 1.75 cm wide and is placed at 1 m distance from the eye, it will subtend an angle of 1 degree, so the number of white — black bar pairs on the pattern will be a measure of the cycles per degree of that pattern. The highest such number that the eye can resolve as stripes, or distinguish from a gray block, is then the measurement of visual acuity of the eye. For a human eye with excellent acuity, the maximum theoretical resolution would be 50 CPD (1.2 arcminute per line pair, or a 0.35 mm line pair, at 1 m). A rat can resolve only about 1 to 2 CPD. A horse has higher acuity through most of the visual field of its eyes than a human has, but does not match the high acuity of the human eye's central fovea region. Spherical aberration limits the resolution of a 7 mm pupil to about 3 arcminutes per line pair. At a pupil diameter of 3 mm, the spherical aberration is greatly reduced, resulting in an improved resolution of approximately 1.7 arcminutes per line pair. A resolution of 2 arcminutes per line pair, equivalent to a 1 arcminute gap in an optotype, corresponds to 20 20 (normal vision) in humans. Color. All organisms are restricted to a small range of the electromagnetic spectrum; this varies from creature to creature, but is mainly between 400 and 700 nm. This is a rather small section of the electromagnetic spectrum, probably reflecting the submarine evolution of the organ: water blocks out all but two small windows of the EM spectrum, and there has been no evolutionary pressure among land animals to broaden this range. The most sensitive pigment, rhodopsin, has a peak response at 500 nm. Small changes to the genes coding for this protein can tweak the peak response by a few nm; pigments in the lens can also "filter" incoming light, changing the peak response. Many organisms are unable to discriminate between colors, seeing instead in shades of "grey"; color vision necessitates a range of pigment cells which are primarily sensitive to smaller ranges of the spectrum. In primates, geckos, and other organisms, these take the form of cone cells, from which the more sensitive rod cells evolved. Even if organisms are physically capable of discriminating different colors, this does not necessarily mean that they can perceive the different colors; only with behavioral tests can this be deduced. Most organisms with color vision are able to detect ultraviolet light. This high energy light can be damaging to receptor cells. With a few exceptions (snakes, placental mammals), most organisms avoid these effects by having absorbent oil droplets around their cone cells. The alternative, developed by organisms that had lost these oil droplets in the course of evolution, is to make the lens impervious to UV light — this precludes the possibility of any UV light being detected, as it does not even reach the retina. Rods and cones. The retina contains two major types of light-sensitive photoreceptor cells used for vision: the rods and the cones. Rods cannot distinguish colors, but are responsible for low-light black-and-white (scotopic) vision; they work well in dim light as they contain a pigment, visual purple, which is sensitive at low light intensity, but saturates at higher (photopic) intensities. Rods are distributed throughout the retina but there are none at the fovea and none at the blind spot. Rod density is greater in the peripheral retina than in the central retina. Cones are responsible for color vision. They require brighter light to function than rods require. There are three types of cones, maximally sensitive to long-wavelength, medium-wavelength, and short-wavelength light (often referred to as red, green, and blue, respectively, though the sensitivity peaks are not actually at these colors). The color seen is the combined effect of stimuli to, and responses from, these three types of cone cells. Cones are mostly concentrated in and near the fovea. Only a few are present at the sides of the retina. Objects are seen most sharply in focus when their images fall on this spot, as when one looks at an object directly. Cone cells and rods are connected through intermediate cells in the retina to nerve fibers of the optic nerve. When rods and cones are stimulated by light, the nerves send off impulses through these fibers to the brain. Pigment. The pigment molecules used in the eye are various, but can be used to define the evolutionary distance between different groups, and can also be an aid in determining which are closely related – although problems of convergence do exist. Opsins are the pigments involved in photoreception. Other pigments, such as melanin, are used to shield the photoreceptor cells from light leaking in from the sides. The opsin protein group evolved long before the last common ancestor of animals, and has continued to diversify since. There are two types of opsin involved in vision; c-opsins, which are associated with ciliary-type photoreceptor cells, and r-opsins, associated with rhabdomeric photoreceptor cells. The eyes of vertebrates usually contain cilliary cells with c-opsins, and (bilaterian) invertebrates have rhabdomeric cells in the eye with r-opsins. However, some "ganglion" cells of vertebrates express r-opsins, suggesting that their ancestors used this pigment in vision, and that remnants survive in the eyes. Likewise, c-opsins have been found to be expressed in the "brain" of some invertebrates. They may have been expressed in ciliary cells of larval eyes, which were subsequently resorbed into the brain on metamorphosis to the adult form. C-opsins are also found in some derived bilaterian-invertebrate eyes, such as the pallial eyes of the bivalve molluscs; however, the lateral eyes (which were presumably the ancestral type for this group, if eyes evolved once there) always use r-opsins. Cnidaria, which are an outgroup to the taxa mentioned above, express c-opsins but r-opsins are yet to be found in this group. Incidentally, the melanin produced in the cnidaria is produced in the same fashion as that in vertebrates, suggesting the common descent of this pigment. | A phylogeny of the extant ant subfamilies. "'Ants'" are social insects of the family "'Formicidae'", and along with the related wasps and bees, they belong to the order Hymenoptera. Ants evolved from wasp-like ancestors in the mid-Cretaceous period between 110 and 130 million years ago and diversified after the rise of flowering plants. Today, more than 12,000 species are classified with upper estimates of about 14,000 species. They are easily identified by their elbowed antennae and a distinctive node-like structure that forms a slender waist. Ants form colonies that range in size from a few dozen predatory individuals living in small natural cavities to highly organised colonies which may occupy large territories and consist of millions of individuals. These larger colonies consist mostly of sterile wingless females forming castes of "workers", "soldiers", or other specialised groups. Ant colonies also have some fertile males called "drones" and one or more fertile females called "queens". The colonies are sometimes described as superorganisms because ants appear to operate as a unified entity, collectively working together to support the colony. Ants have colonised almost every landmass on Earth. The only places lacking indigenous ants are Antarctica and certain remote or inhospitable islands. Ants thrive in most ecosystems, and may form 15–25% of the terrestrial animal biomass. Their success has been attributed to their social organisation and their ability to modify habitats, tap resources, and defend themselves. Their long co-evolution with other species has led to mimetic, commensal, parasitic, and mutualistic relationships. Ant societies have division of labour, communication between individuals, and an ability to solve complex problems. These parallels with human societies have long been an inspiration and subject of study. Many human cultures make use of ants in cuisine, medication and rituals. Some species are valued in their role as biological pest control agents. However, their ability to exploit resources brings ants into conflict with humans, as they can damage crops and invade buildings. Some species, such as the red imported fire ant, are regarded as invasive species, since they have establish themselves in new areas where they may be accidentally introduced. Taxonomy and evolution. The family Formicidae belongs to the order Hymenoptera, which also includes sawflies, bees and wasps. Ants evolved from a lineage within the vespoid wasps. Phylogenetic analysis suggests that ants arose in the mid-Cretaceous period about 110 to 130 million years ago. After the rise of flowering plants about 100 million years ago they diversified and assumed ecological dominance around 60 million years ago. In 1966, E. O. Wilson and his colleagues identified the fossil remains of an ant ("Sphecomyrma freyi") that lived in the Cretaceous period. The specimen, trapped in amber dating back to more than 80 million years ago, has features of both ants and wasps. "Sphecomyrma" was probably a ground forager but some suggest on the basis of groups such as the Leptanillinae and Martialinae that primitive ants were likely to have been predators under the soil surface. During the Cretaceous period, only a few species of primitive ants ranged widely on the Laurasian super-continent (the northern hemisphere). They were scarce in comparison to other insects, representing about 1% of the insect population. Ants became dominant after adaptive radiation at the beginning of the Tertiary period. By the Oligocene and Miocene ants had come to represent 20–40% of all insects found in major fossil deposits. Of the species that lived in the Eocene epoch, approximately one in ten genera survive to the present. Genera surviving today comprise 56% of the genera in Baltic amber fossils (early Oligocene), and 92% of the genera in Dominican amber fossils (apparently early Miocene). Termites, though sometimes called "white ants", are not ants and belong to the order Isoptera. The termites are actually more closely related to cockroaches and mantids. The fact that ants and termites are both eusocial came about by Convergent evolution. Velvet ants look like large ants, but are wingless female wasps. Etymology. The word "ant" is derived from "ante" of Middle English which is derived from "æmette" and "emmett" of Old English and is related to the Old High German "āmeiza" from which comes "Ameise", the German word for ant. The family name "Formicidae" is derived from the Latin "formīca" ("ant") from which derived Portuguese "formiga", Spanish "hormiga", Romanian "furnică", French "fourmi", etc. Distribution and diversity. Ants are found on all continents except Antarctica and only a few large islands such as Greenland, Iceland, parts of Polynesia and the Hawaiian Islands lack native ant species. Ants occupy a wide range of ecological niches, and are able to exploit a wide range of food resources either as direct or indirect herbivores, predators and scavengers. Most species are omnivorous generalists but a few are specialist feeders. Their ecological dominance may be measured by their biomass, and estimates in different environments suggest that they contribute 15–20% (on average and nearly 25% in the tropics) of the total terrestrial animal biomass, which exceeds that of the vertebrates. Ants range in size from. Their colours vary; most are red or black, green is less common, and some tropical species have a metallic lustre. More than 12,000 species are currently known (with upper estimates of about 14,000), with the greatest diversity in the tropics. Taxonomic studies continue to resolve the classification and systematics of ants. Online databases of ant species, including AntBase and the Hymenoptera Name Server, help to keep track of the known and newly described species. The relative ease with which ants can be sampled and studied in ecosystems has made them useful as indicator species in biodiversity studies. Morphology. Ants are distinct in their morphology from other insects in having elbowed antennae, metapleural glands, and a strong constriction of their second abdominal segment into a node-like petiole. The head, mesosoma and metasoma or gaster are the three distinct body segments. The petiole forms a narrow waist between their mesosoma (thorax plus the first abdominal segment, which is fused to it) and gaster (abdomen less the abdominal segments in the petiole). The petiole can be formed by one or two nodes (the second alone, or the second and third abdominal segments). Like other insects, ants have an exoskeleton, an external covering that provides a protective casing around the body and a point of attachment for muscles, in contrast to the internal skeletons of humans and other vertebrates. Insects do not have lungs; oxygen and other gases like carbon dioxide pass through their exoskeleton through tiny valves called spiracles. Insects also lack closed blood vessels; instead, they have a long, thin, perforated tube along the top of the body (called the "dorsal aorta") that functions like a heart, and pumps haemolymph towards the head, thus driving the circulation of the internal fluids. The nervous system consists of a ventral nerve cord that runs the length of the body, with several ganglia and branches along the way reaching into the extremities of the appendages. An ant's head contains many sensory organs. Like most insects, ants have compound eyes made from numerous tiny lenses attached together. Ants' eyes are good for acute movement detection but do not give a high resolution. They also have three small ocelli (simple eyes) on the top of the head that detect light levels and polarisation. Compared to vertebrates, most ants have poor-to-mediocre eyesight and a few subterranean species are completely blind. Some ants such as Australia's bulldog ant, however, have exceptional vision. Two antennae ("feelers") are attached to the head; these organs detect chemicals, air currents and vibrations; they are also used to transmit and receive signals through touch. The head has two strong jaws, the mandibles, used to carry food, manipulate objects, construct nests, and for defence. In some species a small pocket (infrabuccal chamber) inside the mouth stores food, so it can be passed to other ants or their larvae. All six legs are attached to the mesosoma ("thorax"). A hooked claw at the end of each leg helps ants to climb and hang onto surfaces. Most queens and male ants have wings; queens shed the wings after the nuptial flight, leaving visible stubs, a distinguishing feature of queens. However, wingless queens (ergatoids) and males occur in a few species. The metasoma (the "abdomen") of the ant houses important internal organs, including those of the reproductive, respiratory (tracheae) and excretory systems. Workers of many species have their egg-laying structures modified into stings that are used for subduing prey and defending their nests. Polymorphism. In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major workers. Often the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. Such individuals are sometimes called "soldier" ants because their stronger mandibles make them more effective in fighting, although they are still workers and their "duties" typically do not vary greatly from the minor or median workers. In a few species the median workers are absent, creating a sharp divide between the minors and majors. Weaver ants, for example, have a distinct bimodal size distribution. Some other species show continuous variation in the size of workers. The smallest and largest workers in "Pheidologeton diversus" show nearly a 500-fold difference in their dry-weights. Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile haploid males. The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called "repletes". This polymorphism in morphology and behaviour of workers was initially thought to be determined by environmental factors such as nutrition and hormones which led to different developmental paths; however, genetic differences between worker castes have been noted in "Acromyrmex" sp. These polymorphisms are caused by relatively small genetic changes; differences in a single gene of "Solenopsis invicta" can decide whether the colony will have single or multiple queens. The Australian jack jumper ant ("Myrmecia pilosula"), has only a single pair of chromosomes (males have just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects. Development and reproduction. The life of an ant starts from an egg. If the egg is fertilised, the progeny will be female (diploid); if not, it will be male (haploid). Ants develop by complete metamorphosis with the larval stages passing through a pupal stage before emerging as an adult. The larva is largely immobile and is fed and cared for by workers. Food is given to the larvae by trophallaxis, a process in which an ant regurgitates liquid food held in its crop. This is also how adults share food, stored in the "social stomach", among themselves. Larvae may also be provided with solid food such as trophic eggs, pieces of prey and seeds brought back by foraging workers and may even be transported directly to captured prey in some species. The larvae grow through a series of moults and enter the pupal stage. The pupa has the appendages free and not fused to the body as in a butterfly pupa. The differentiation into queens and workers (which are both female), and different castes of workers (when they exist), is determined by the nutrition the larvae obtain. Larvae and pupae need to be kept at fairly constant temperatures to ensure proper development, and so are often moved around the various brood chambers within the colony. A new worker spends the first few days of its adult life caring for the queen and young. It then graduates to digging and other nest work, and later to defending the nest and foraging. These changes are sometimes fairly sudden, and define what are called temporal castes. An explanation for the sequence is suggested by the high casualties involved in foraging, making it an acceptable risk only for ants that are older and are likely to die soon of natural causes. Most ant species have a system in which only the queen and breeding females have the ability to mate. Contrary to popular belief, some ant nests have multiple queens while others can exist without queens. Workers with the ability to reproduce are called "gamergates" and colonies that lack queens are then called gamergate colonies; colonies with queens are said to be queen-right. The winged male ants, called drones, emerge from pupae along with the breeding females (although some species, like army ants, have wingless queens), and do nothing in life except eat and mate. During the short breeding period, the reproductives, excluding the colony queen, are carried outside where other colonies of similar species are doing the same. Then, all the winged breeding ants take flight. Mating occurs in flight and the males die shortly afterwards. Females of some species mate with multiple males. Mated females then seek a suitable place to begin a colony. There, they break off their wings and begin to lay and care for eggs. The females store the sperm they obtain during their nuptial flight to selectively fertilise future eggs. The first workers to hatch are weak and smaller than later workers, but they begin to serve the colony immediately. They enlarge the nest, forage for food and care for the other eggs. This is how new colonies start in most species. Species that have multiple queens may have a queen leaving the nest along with some workers to found a colony at a new site, a process akin to swarming in honeybees. Ant colonies can be long-lived. The queens can live for up to 30 years, and workers live from 1 to 3 years. Males, however, are more transitory, and survive only a few weeks. Ant queens are estimated to live 100 times longer than solitary insects of a similar size. Ants are active all year long in the tropics but, in cooler regions, survive the winter in a state of dormancy or inactivity. The forms of inactivity are varied and some temperate species have larvae going into the inactive state (diapause), while in others, the adults alone pass the winter in a state of reduced activity. Communication. Ants communicate with each other using pheromones. These chemical signals are more developed in ants than in other hymenopteran groups. Like other insects, ants perceive smells with their long, thin and mobile antennae. The paired antennae provide information about the direction and intensity of scents. Since most ants live on the ground, they use the soil surface to leave pheromone trails that can be followed by other ants. In species that forage in groups, a forager that finds food marks a trail on the way back to the colony; this trail is followed by other ants, these ants then reinforce the trail when they head back with food to the colony. When the food source is exhausted, no new trails are marked by returning ants and the scent slowly dissipates. This behaviour helps ants deal with changes in their environment. For instance, when an established path to a food source is blocked by an obstacle, the foragers leave the path to explore new routes. If an ant is successful, it leaves a new trail marking the shortest route on its return. Successful trails are followed by more ants, reinforcing better routes and gradually finding the best path. Ants use pheromones for more than just making trails. A crushed ant emits an alarm pheromone that sends nearby ants into an attack frenzy and attracts more ants from further away. Several ant species even use "propaganda pheromones" to confuse enemy ants and make them fight among themselves. Pheromones are produced by a wide range of structures including Dufour's glands, poison glands and glands on the hindgut, pygidium, rectum, sternum and hind tibia. Pheromones are also exchanged mixed with food and passed by trophallaxis, transferring information within the colony. This allows other ants to detect what task group ("e.g.", foraging or nest maintenance) other colony members belong to. In ant species with queen castes, workers begin to raise new queens in the colony when the dominant queen stops producing a specific pheromone. Some ants produce sounds by stridulation, using the gaster segments and their mandibles. Sounds may be used to communicate with colony members or with other species. Defence===. Ants attack and defend themselves by biting and, in many species, by stinging, often injecting or spraying chemicals like formic acid. Bullet ants ("Paraponera"), located in Central and South America, are considered to have the most painful sting of any insect, although it is usually not fatal to humans. This sting is given the highest rating on the Schmidt Sting Pain Index. The sting of Jack jumper ants can be fatal, and an antivenin has been developed. Fire ants, "Solenopsis" spp., are unique in having a poison sac containing piperidine alkaloids. Their stings are painful and can be dangerous to hypersensitive people. Trap-jaw ants of the genus "Odontomachus" are equipped with mandibles called trap-jaws, which snap shut faster than any other predatory appendages within the animal kingdom. One study of "Odontomachus bauri" recorded peak speeds of between 126 and 230 h (78 143 mph), with the jaws closing within 130 microseconds on average. The ants were also observed to use their jaws as a catapult to eject intruders or fling themselves backwards to escape a threat. Before the strike, the ant opens its mandibles extremely widely and locks them in this position by an internal mechanism. Energy is stored in a thick band of muscle and explosively released when triggered by the stimulation of sensory hairs on the inside of the mandibles. The mandibles also permit slow and fine movements for other tasks. Trap-jaws are also seen in the following genera: "Anochetus", "Orectognathus", and "Strumigenys", plus some members of the Dacetini tribe, which are viewed as examples of convergent evolution. In addition to defence against predators, ants need to protect their colonies from pathogens. Some worker ants maintain the hygiene of the colony and their activities include undertaking or "necrophory", the disposal of dead nest-mates. Oleic acid has been identified as the compound released by dead ants that triggers undertaking behaviour in "Atta mexicana". Nests may be protected from physical threats such as flooding and over-heating by elaborate nest architecture. Workers of "Cataulacus muticus", an arboreal species that lives in plant hollows, respond to flooding by drinking water inside the nest, and excreting it outside. Learning. Many animals can learn behaviours by imitation but ants may be the only group apart from mammals where interactive teaching has been observed. A knowledgeable forager of "Temnothorax albipennis" leads a naive nest-mate to newly discovered food by the excruciatingly slow process of tandem running. The follower obtains knowledge through its leading tutor. Both leader and follower are acutely sensitive to the progress of their partner with the leader slowing down when the follower lags, and speeding up when the follower gets too close. Controlled experiments with colonies of "Cerapachys biroi" suggest that individuals may choose nest roles based on their previous experience. An entire generation of identical workers was divided into two groups whose outcome in food foraging was controlled. One group was continually rewarded with prey, while it was made certain that the other failed. As a result, members of the successful group intensified their foraging attempts while the unsuccessful group ventured out less and less. A month later, the successful foragers continued in their role while the others moved to specialise in brood care. Nest construction. Complex nests are built by many ants, but other species are nomadic and do not build permanent structures. Ants may form subterranean nests or build them on trees. These nests can be found in the ground, under stones or logs, inside logs, hollow stems or even acorns. The materials used for construction include soil and plant matter, and ants carefully select their nest sites; "Temnothorax albipennis" will avoid sites with dead ants, as these may indicate the presence of pests or disease. They are quick to abandon established nests at the first sign of threats. The army ants of South America and the driver ants of Africa do not build permanent nests, but instead alternate between nomadism and stages where the workers form a temporary nest (bivouac) from their own bodies, by holding each other together. Weaver ant ("Oecophylla" spp.) workers build nests in trees by attaching leaves together, first pulling them together with bridges of workers and then inducing their larvae to produce silk as they are moved along the leaf edges. Similar forms of nest construction are seen in some species of "Polyrhachis". Food cultivation. Most ants are generalist predators, scavengers and indirect herbivores, but a few have evolved specialised ways of obtaining nutrition. Leafcutter ants ("Atta" and "Acromyrmex") feed exclusively on a fungus that grows only within their colonies. They continually collect leaves which are taken to the colony, cut into tiny pieces and placed in fungal gardens. Workers specialise in tasks according to their sizes. The largest ants cut stalks, smaller workers chew the leaves and the smallest tend the fungus. Leafcutter ants are sensitive enough to recognise the reaction of the fungus to different plant material, apparently detecting chemical signals from the fungus. If a particular type of leaf is toxic to the fungus the colony will no longer collect it. The ants feed on structures produced by the fungi called "gongylidia". Symbiotic bacteria on the exterior surface of the ants produce antibiotics that kill bacteria that may harm the fungi. Navigation. Foraging ants travel distances of up to from their nest and usually find their way back using scent trails. Some ants forage at night. Day foraging ants in hot and arid regions face death by desiccation, so the ability to find the shortest route back to the nest reduces that risk. Diurnal desert ants ("Cataglyphis fortis") use visual landmarks in combination with other cues to navigate. In the absence of visual landmarks, the closely related Sahara desert ant ("Cataglyphis bicolor") navigates by keeping track of direction as well as distance travelled, like an internal pedometer that counts how many steps they take in each direction. They integrate this information to find the shortest route back to their nest. Several species of ants are able to use the Earth's magnetic field. Ants' compound eyes have specialised cells that detect polarised light from the Sun, which is used to determine direction. Locomotion. Worker ants do not have wings and reproductive females lose their wings after their mating flights in order to begin their colonies. Therefore, unlike their wasp ancestors, most ants travel by walking. Some species are capable of leaping. For example, Jerdon's jumping ant ("Harpegnathos saltator") is able to jump by synchronising the action of its mid and hind pairs of legs. There are several species of gliding ant including "Cephalotes atratus"; this may be a common trait among most arboreal ants. Ants with this ability are able to control the direction of their descent while falling. Other species of ants can form chains to bridge gaps over water, underground, or through spaces in vegetation. Some species also form floating rafts that help them survive floods. These rafts may also have a role in allowing ants to colonise islands. "Polyrhachis sokolova", a species of ant found in Australian mangrove swamps, can swim and live in underwater nests. Since they lack gills, they breathe in trapped pockets of air in the submerged nests. Cooperation and competition. Not all ants have the same kind of societies. The Australian bulldog ants are among the biggest and most basal (primitive) of ants. Like virtually all ants they are eusocial, but their social behaviour is poorly developed compared to other species. Each individual hunts alone, using its large eyes instead of its chemical senses to find prey. Some species (such as "Tetramorium caespitum") attack and take over neighbouring ant colonies. Others are less expansionist but just as aggressive; they invade colonies to steal eggs or larvae, which they either eat or raise as workers slaves. Extreme specialists among these slave-raiding ants, such as the Amazon ants, are incapable of feeding themselves and need captured workers to survive. Ants identify kin and nestmates through their scent, which comes from hydrocarbon-laced secretions that coat their exoskeletons. If an ant is separated from its original colony, it will eventually lose the colony scent. Any ant that enters a colony without a matching scent will be attacked. Parasitic ant species enter the colonies of host ants and establish themselves as social parasites; species like "Strumigenys xenos" are entirely parasitic and do not have workers, but instead rely on the food gathered by their "Strumigenys perplexa" hosts. This form of parasitism is seen across many ant genera, but the parasitic ant is usually a species that is closely related to its host. A variety of methods are employed to enter the nest of the host ant. A parasitic queen can enter the host nest before the first brood has hatched, establishing herself prior to development of a colony scent. Other species use pheromones to confuse the host ants or to trick them into carrying the parasitic queen into the nest. Some simply fight their way into the nest. A conflict between the sexes of a species is seen in some species of ants with the reproductives apparently competing to produce offspring that are as closely related to them as possible. The most extreme form involves the production of clonal offspring. An extreme of sexual conflict is seen in "Wasmannia auropunctata", where the queens produce diploid daughters by thelytokous parthenogenesis and males produce clones by a process where a diploid egg loses its maternal contribution to produce haploid males that are clones of the father. Relationships with other organisms. The spider "Myrmarachne plataleoides" (here a female) mimics weaver ants to avoid predators. Ants form symbiotic associations with a range of species, including other ant species, other insects, plants, and fungi. They are preyed on by many animals and even certain fungi. Some arthropod species spend part of their lives within ant nests, either preying on ants, their larvae and eggs, consuming the ants' food stores, or avoiding predators. These inquilines can bear a close resemblance to ants. The nature of this ant mimicry (myrmecomorphy) varies, with some cases involving Batesian mimicry, where the mimic reduces the risk of predation. Others show Wasmannian mimicry, a form of mimicry seen only in inquilines. Aphids and other hemipteran insects secrete a sweet liquid called honeydew when they feed on plant sap. The sugars in honeydew are a high-energy food source, which many ant species collect. In some cases the aphids secrete the honeydew in response to the ants' tapping them with their antennae. The ants in turn keep predators away and will move the aphids between feeding locations. On migrating to a new area, many colonies will take the aphids with them, to ensure a continued supply of honeydew. Ants also tend mealybugs to harvest their honeydew. Mealybugs can become a serious pest of pineapples if ants are present to protect mealybugs from their natural enemies. Myrmecophilous (ant-loving) caterpillars of the family Lycaenidae (e.g., blues, coppers, or hairstreaks) are herded by the ants, led to feeding areas in the daytime, and brought inside the ants' nest at night. The caterpillars have a gland which secretes honeydew when the ants massage them. Some caterpillars produce vibrations and sounds that are perceived by the ants. Other caterpillars have evolved from ant-loving to ant-eating: these myrmecophagous caterpillars secrete a pheromone that makes the ants act as if the caterpillar is one of their own larvae. The caterpillar is then taken into the ants' nest where it feeds on the ant larvae. Fungus-growing ants that make up the tribe Attini, including leafcutter ants, cultivate certain species of fungus in the "Leucoagaricus" or "Leucocoprinus" genera of the Agaricaceae family. In this ant-fungus mutualism, both species depend on each other for survival. The ant "Allomerus decemarticulatus" has evolved a three-way association with the host plant "Hirtella physophora" (Chrysobalanaceae), and a sticky fungus which is used to trap their insect prey. Lemon ants make devil's gardens by killing surrounding plants with their stings and leaving a pure patch of lemon ant trees ("Duroia hirsuta"). This modification of the forest provides the ants with more nesting sites inside the stems of the "Duroia" trees. Some trees have extrafloral nectaries that provide food for ants, which in turn protect the plant from herbivorous insects. Species like the bullhorn acacia ("Acacia cornigera") in Central America have hollow thorns that house colonies of stinging ants ("Pseudomyrmex ferruginea") that defend the tree against insects, browsing mammals, and epiphytic vines. Isotopic labelling studies suggest that plants also obtain nitrogen from the symbiotic ants. In return, the ants obtain food from protein-lipid Beltian bodies. Another example of this type of ectosymbiosis comes from the "Macaranga" tree, which has stems adapted to house colonies of "Crematogaster" ants. Many tropical tree species have seeds that are dispersed by ants. Seed dispersal by ants or myrmecochory is widespread particularly in Africa and Australia. Some plants in fire-prone grassland systems are particularly dependent on ants for their survival and dispersal. Many ant-dispersed seeds have special external structures, elaiosomes, that are sought after by ants as food. A convergence, possibly a form of mimicry, is seen in the eggs of stick insects. They have an edible elaiosome-like structure and are taken into the ant nest where the young hatch. Ants prey on and obtain food from a number of social insects including other ants. Some species specialise in preying on termites ("Megaponera" and "Termitopone") while a few Cerapachyinae prey on other ants. Some termites form associations with certain ant species to keep away other predatory ant species.The tropical wasp "Mischocyttarus drewseni" coats the pedicel of its nest with an ant-repellant chemical. It is suggested that many tropical wasps may build their nests in trees and cover them to protect themselves from ants. Stingless bees ("Trigona" and "Melipona") use chemical defences against ants. Flies in the Old World genus "Bengalia" (Calliphoridae) prey on ants and are kleptoparasites, snatching prey or brood from the mandibles of adult ants. Wingless and legless females of the Malaysian phorid fly ("Vestigipoda myrmolarvoidea") live in the nests of ants of the genus "Aenictus" and are cared for by the ants. The fungus "Cordyceps" infects ants, causing them to climb up plants and sink their mandibles into plant tissue. The fungus kills the ant, grows on its remains, and produces a fruiting body. It appears that the fungus alters the behaviour of the ant to help disperse its spores. Strepsipteran parasites also manipulate their ant host to climb grass stems, to help the parasite find mates. A nematode ("Myrmeconema neotropicum") that infects canopy ants ("Cephalotes atratus") causes the black coloured gasters of workers to turn red. The parasite also alters the behaviour of the ant, and makes them carry their gasters high. The conspicuous red gasters are mistaken by birds for ripe fruits such as "Hyeronima alchorneoides" and eaten. The droppings of the bird are collected by other ants and fed to their young leading to the further spread of the nematode. South American poison dart frogs in the genus "Dendrobates" feed mainly on ants, and the toxins in their skin may come from the ants. Several South American antbirds follow army ants to feed on the insects that are flushed from cover by the foraging ants. This behaviour was once considered mutualistic, but later studies show that it is instead kleptoparastic, with the birds stealing prey. Birds indulge in a peculiar behaviour called anting that is as yet not fully understood. Here birds rest on ant nests, or pick and drop ants onto their wings and feathers; this may remove ectoparasites. Anteaters, pangolins and several marsupial species in Australia have special adaptations for living on a diet of ants. These adaptations include long, sticky tongues to capture ants and strong claws to break into ant nests. Brown bears ("Ursus arctos") have been found to feed on ants, and about 12%, 16%, and 4% of their faecal volume in spring, summer, and autumn, respectively, is composed of ants. Relationship with humans. Ants perform many ecological roles that are beneficial to humans, including the suppression of pest populations and aeration of the soil. The use of weaver ants in citrus cultivation in southern China is considered one of the oldest known applications of biological control. On the other hand, ants can become nuisances when they invade buildings, or cause economic losses. In some parts of the world (mainly Africa and South America), large ants, especially army ants, are used as surgical sutures. The wound is pressed together and ants are applied along it. The ant seizes the edges of the wound in its mandibles and locks in place. The body is then cut off and the head and mandibles remain in place to close the wound. Some ants of the family Ponerinae have toxic venom and are of medical importance. The species include "Paraponera clavata" ("Tocandira") and "Dinoponera" spp. (false "Tocandira"s) of South America and the "Myrmecia" ants of Australia. In South Africa, ants are used to help harvest rooibos ("Aspalathus linearis"), which are small seeds used to make a herbal tea. The plant disperses its seeds widely, making manual collection difficult. Black ants collect and store these and other seeds in their nest, where humans can gather them "en masse". Up to half a pound (200 g) of seeds can be collected from one ant-heap. As food. Ants and their larvae are eaten in different parts of the world. The eggs of two species of ants are the basis for the dish in Mexico known as "escamoles". They are considered a form of insect caviar and can sell for as much as USD 40 per pound (USD 90 kg) because they are seasonal and hard to find. In the Colombian department of Santander, "hormigas culonas" (roughly interpreted as "large-bottomed ants") "Atta laevigata" are toasted alive and eaten. In areas of India, and throughout Burma and Thailand, a paste of the green weaver ant ("Oecophylla smaragdina") is served as a condiment with curry. Weaver ant eggs and larvae as well as the ants themselves may be used in a Thai salad, "yum" (ยำ), in a dish called "yum khai mod daeng" (ยำไข่มดแดง) or red ant egg salad, a dish that comes from the Issan or north-eastern region of Thailand. Saville-Kent, in the "Naturalist in Australia" wrote "Beauty, in the case of the green ant, is more than skin-deep. Their attractive, almost sweetmeat-like translucency possibly invited the first essays at their consumption by the human species". Mashed up in water, after the manner of lemon squash, "these ants form a pleasant acid drink which is held in high favor by the natives of North Queensland, and is even appreciated by many European palates". In his "First Summer in the Sierra", John Muir notes that the Digger Indians of California ate the tickly acid gasters of the large jet-black carpenter ants. The Mexican Indians eat the replete workers, or living honey-pots, of the honey ant ("Myrmecocystus"). As pests. Some ant species are considered pests, and because of the adaptive nature of ant colonies, eliminating the entire colony is nearly impossible. Pest management is therefore a matter of controlling local populations, instead of eliminating an entire colony, and most attempts at control are temporary solutions. Ants classified as pests include the pavement ant, yellow crazy ant, sugar ants, the Pharaoh ant, carpenter ants, Argentine ant, odorous house ants, red imported fire ant and European fire ant. Populations are controlled using insecticide baits, either in granule or liquid formulations. Bait is gathered by the ants as food and brought back to the nest where the poison is inadvertently spread to other colony members through trophallaxis. Boric acid and borax are often used as insecticides that are relatively safe for humans. Bait may be broadcast over a large area to control species like the red fire ant that occupy large areas. Nests of red fire ants may be destroyed by following the ants' trails back to the nest and then pouring boiling water into it to kill the queen. This works in about 60% of the mounds and requires about per mound. In science and technology. Myrmecologists study ants in the laboratory and in their natural conditions. Their complex and variable social structures have made ants ideal model organisms. Studies on ants have tested hypotheses in ecology, sociobiology and have been particularly important in examining the predictions of theories of kin selection and evolutionarily stable strategies. Ant colonies can be studied by rearing or temporarily maintaining them in formicaria, specially constructed glass framed enclosures. Individuals may be tracked for study by marking them with colours. The successful techniques used by ant colonies have been studied in computer science and robotics to produce distributed and fault-tolerant systems for solving problems. This area of biomimetics has led to studies of ant locomotion, search engines that make use of "foraging trails", fault-tolerant storage and networking algorithms. In culture. Ants have often been used in fables and children's stories to represent industriousness and cooperative effort. They are also mentioned in religious texts. In the Book of Proverbs in the Bible, ants are held up as a good example for humans for their hard work and cooperation. Aesop did the same in his fable The Ant and the Grasshopper. In parts of Africa, ants are considered to be the messengers of the gods. Ant bites are often said to have curative properties. The sting of some species of "Pseudomyrmex" is claimed to give fever relief. Some Native American mythology, such as the Hopi mythology, considers ants as the very first animals. Others use ant bites in initiation ceremonies as a test of endurance. Ant society has always fascinated humans and has been written about both humorously and seriously. Mark Twain wrote about ants in his "A Tramp Abroad". Some modern authors have used the example of the ants to comment on the relationship between society and the individual. Examples are Robert Frost in his poem "Departmental" and T. H. White in his fantasy novel "The Once and Future King". The plot in French entomologist and writer Bernard Werber's "Les Fourmis" science-fiction trilogy is divided between the worlds of ants and humans; ants and their behaviour is described using contemporary scientific knowledge. In more recent times, animated cartoons and 3D animated movies featuring ants have been produced include "Antz", "A Bug's Life", "The Ant Bully", "The Ant and the Aardvark", "Atom Ant", and there is a comic book superhero called Ant-Man. From the late 1950s through the late 1970s, ant farms were popular educational children's toys in the United States. Later versions use transparent gel instead of soil allowing greater visibility. In the early 1990s, the video game SimAnt, which simulated an ant colony, won the 1992 Codie award for "Best Simulation Program". Ants are also quite popular inspiration for many science-fiction creatures, such as the Formics of "Ender's Game", the Bugs of "Starship Troopers", the giant ants in the film "Them!", and ants mutated into super intelligence in "Phase IV". In strategy games, ant-based species often benefit from increased production rates due to their single-minded focus, such as the Klackons in the "Master of Orion" series of games or the ChCht in "Deadlock II". These characters are often credited with a hive mind, a common misconception about ant colonies. |