door |
beetle |
top 10 words in brain distribution (in article): build city light material house wood design type town wall |
top 10 words in brain distribution (in article): species bird egg plant insect food female form family live |
top 10 words in brain distribution (not in article): store drink lamp street state water wine floor Unite home |
top 10 words in brain distribution (not in article): fish produce ant bee fruit nest grow time snake shark |
times more probable under door 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under beetle (words not in the model) | |
A door'" is a moveable barrier used to cover an opening. Doors are used widely and are found in walls or partitions of a building or space, furniture such as cupboards, cages, vehicles, and containers. A door can be opened to give access and closed more or less securely using a combination of latches and locks. (See article Door security). Doors are nearly universal in buildings of all kinds, allowing passage between the inside and outside, and between internal rooms. When open, they admit ventilation and light. The door is used to control the physical atmosphere within a space by enclosing it, excluding air drafts, so that interiors may be more effectively heated or cooled. Doors are significant in preventing the spread of fire. They act as a barrier to noise. (See article Door safety). They are also used to screen areas of a building for aesthetic purposes, keeping formal and utility areas separate. Doors also have an aesthetic role in creating an impression of what lies beyond. Doors are often symbolically endowed with ritual purposes, and the guarding or receiving of the keys to a door, or being granted access to a door can have special significance. Similarly, doors and doorways frequently appear in metaphorical or allegorical situations, literature and the arts, often as a portent of change. Design and construction styles. Many kinds of doors have specific names, depending on their purpose. The most common variety of door consists of a single rigid panel that fills the doorway. Many variations on this basic design are possible, such as "double" doors that have two adjacent independent panels hinged on each side of the doorway. A "'Dutch door'" or "'stable door'" is divided in half horizontally. Traditionally the top half can be opened to allow a horse or other animal to be fed, while the bottom half remained closed to keep the animal inside. "'Saloon doors'" are a pair of lightweight swing doors often found in public bars. Saloon doors, also known as "'cafe doors'", often use "'double action hinges'", which will return the door to the center, regardless of which direction it is opened, due to the double action springs in the doors. Saloon doors that only extend from knee-level to chest-level are known as "'batwing doors'". A "'blind door'" is a door with no visible trim or operable components. It is designed to blend with the adjacent wall in all finishes, and visually to be a part of the wall, a disguised door. A "'barn door'" is a door characteristic of a barn. They are often always found on barns, and because of a barn's immense size (often) doors are subsequently big for utility. A "'French door'", also called a "'French window'", is a door that has multiple windows ("lights") set into it for the full length of the door. Traditional French doors are assembled from individual small pieces of glass and mullions. These doors are also known as true divided lite[sic] French doors. French doors made of double-pane glass (on exterior doors for insulation reasons) may have a decorative grille embedded between the panes, or may also be true divided lite French doors. The decorative grille may also be superimposed on top of single pane of glass in the door. A "'louvred door'" has fixed or movable wooden fins (often called slats or louvers) which permit open ventilation whilst preserving privacy and preventing the passage of light to the interior. Being relatively weak structures, they are most commonly used for wardrobes and drying rooms, where security is of less importance than good ventilation, although a very similar structure is commonly used to form window shutters. A "'flush door'" is a completely smooth door, having plywood or MDF fixed over a light timber frame, the hollow parts of which are often filled with a cardboard core material. Flush doors are most commonly employed in the interior of a dwelling, although slightly more substantial versions are occasionally used as exterior doors, especially within hotels and other buildings containing many independent dwellings. A "'moulded door'" has the same structure as that of flush door. The only difference is that the surface material is a moulded skin made of HDF MDF. It is commonly used as interior doors. A "'ledge and brace door'" is a door made from multiple vertical planks fixed together by two horizontal planks (the ledges) and kept square by a diagonal plank (the brace). A "'wicket door'" is a normal sized door built into a much larger one, such as the gate of a city or castle. A "'bifold door'" id="bifold"/> is a door unit that has several sections, folding in pairs. Wood is the most common material, and doors may also be metal or glass. Bifolds are most commonly made for closets, but may also be used as units between rooms. A "'sliding glass door'", sometimes called an Arcadia door, is a door made of glass that slides open and sometimes has a screen. "'Australian doors'" are a pair of plywood swinging doors often found in Australian public houses. These doors are generally red or brown in color and bear a resemblance to the more formal doors found in other British Colonies' public houses. A "'false door'" is a wall decoration that looks like a door. In ancient Egyptian architecture, this was a common element in a tomb, the false door representing a gate to the afterlife. They can also be found in the funerary architecture of the desert tribes (e.g., Libyan Ghirza). Hinged doors. Most doors are hinged along one side to allow the door to pivot away from the doorway in one direction but not in the other. The axis of rotation is usually vertical. In some cases, such as hinged garage doors often horizontal, above the door opening. Doors can be hinged so that the axis of rotation is not in the plane of the door to reduce the space required on the side to which the door opens. This requires a mechanism so that the axis of rotation is on the side other than that in which the door opens. This is sometimes the case in trains, such as for the door to the toilet, which opens inward. "'A swing door'" has special hinges that allow it to open either outwards or inwards, and is usually sprung to keep it closed. A "'Mead door'" is a double action pivot door capable of swinging both ways. First introduced by Scott Mead, established in Leicester, England. The Mead door is susceptible to forced entry. Sliding doors. It is often useful to have doors which slide along tracks, often for space or aesthetic considerations. A bypass door"' is a door unit that has two or more sections. The doors can slide in either direction along one axis on parallel overhead tracks, sliding past each other. They are most commonly used in closets, in order to access one side of the closet at a time. The doors in a bypass unit will overlap slightly when viewed from the front, in order not to have a visible gap between them. Doors which slide between two wall panels are called pocket doors'". Sliding glass doors are common in many houses, particularly as an entrance to the backyard. Such doors are also popular for use for the entrances to commercial structures. A "'tambour door'" is made of narrow horizontal slats and "rolls" up and down by sliding along vertical tracks and is typically found in entertainment centres and cabinets. Folding doors. Folding doors have an even number of sections, generally 2 to 4, folding in pairs. The doors can open from either side for one pair, or fold off both sides for two pairs. Rotating doors. A "'revolving door'" normally has four wings leaves that hang on a center shaft and rotate one way about a vertical axis. The door may be motorized, or pushed manually using pushbars. People can walk out of and into the building at the same time. Between the point of access and the point of exit the user walks through an airlock. Revolving doors therefore create a good seal from the outside and help to reduce C and heating costs climate control from the building. This type of door is also often seen as a mark of prestige and glamour for a building and it not unusual for neighbouring buildings to install their own revolving doors when a rival building gets one. A"' butterfly door'" called because of its two "wings". It consists of a double-wide panel with its rotation axle in the centre, effectively creating two separate openings when the door is opened. Butterfly doors are made to rotate open in one direction (usually counterclockwise), and rotate closed in the opposite direction. The door is not equipped with handles, so it is a "push" door. This is for safety, because if it could open in both directions, someone approaching the door might be caught off-guard by someone else opening the other side, thus impacting the first person. Such doors are popular in public transit stations, as it has a large capacity, and when the door is opened, traffic passing in both directions keeps the door open. They are particularly popular in underground subway stations, because they are heavy, and when air currents are created by the movement of trains, the force will be applied to both wings of the door, thus equalizing the force on either side, keeping the door shut. "'French Doors'" derived from an original French design called the casement door, can be created with two out-swinging or in-swinging door panels or two sliding panels or pocket doors. Others. An "'up-and-over'" door is often used in garages. Instead of hinges it has a mechanism, often counterbalanced or sprung, that allows it to be lifted so that it rests horizontally above the opening. Also known as an "'overhead'" door. "'Automatic doors'" are powered open and closed either by power, spring, or both. There are several methods by which an automatic door is activated: In addition to activation sensors automatic doors are generally fitted with safety sensors. These are usually an infrared curtain or beam, but can be a pressure mat fitted on the swing side of the door. The purpose of the safety sensor is to prevent the door from colliding with an object in its path by stopping or slowing its motion. "'Inward opening doors'" are doors that can only be opened (or forced open) from outside a building. Such doors pose a substantial fire risk to occupants of occupied buildings when they are locked. As such doors can only be forced open from the outside, building occupants would be prevented from escaping. In commercial and retail situations manufacturers have included in the design a mechanism that allows an inward opening door to be pushed open outwards in the event of an emergency (which is often a regulatory requirement). This is known as a 'breakaway' feature. Pushing the door outward at its closed position, through a switch mechanism, disconnects power to the latch and allows the door to swing outward. Upon returning the door to the closed position, power is restored. Applications. Doors have numerous general and specialized uses in buildings, storage devices, vehicles, etc. In building interiors, doors are generally used to separate interior spaces, rooms, closets, etc. for privacy, convenience, and safety reasons. Doors are also used to secure passages into a building from the exterior for reasons of safety and climate control. Other than these common usages, doors also have the following applications: Doorway. When framed in wood for snug fitting of a door, the doorway consists of two vertical "jambs" on either side, a "lintel" or "head jamb" at the top, and perhaps a "threshold" at the bottom. When a door has more than one movable section, one of the sections may be called a "leaf". See door furniture for a discussion of attachments to doors such as door handles and doorknobs. Related hardware. Door furniture or hardware refers to any of the items that are attached to a door or a drawer to enhance its functionality or appearance. This includes items such as hinges, handles, door stops, etc. Door construction. Panel doors'" (doors built with frame and panel construction, also called "'stile and rail doors'"): "'Plank and batten doors'", (an older design consisting primarily of vertical slats): "'Ledged and braced doors'" Consists of vertical tongue and grooved boards held together with battens and diagonal braces. "'Frame and filled door'" Consists of a solid timber frame, filled on one face, face with Tongue and Grooved boards. Quite often used externally with the boards on the weather face. "'Flush doors'" (many modern doors, including most interior doors): Door swings, or handing, are always determined from the secure side of the door (ie. the side you use the key on, outside to inside, or public to private). Sizing: A standard US door size 36" x 80" (0.91 m x 2.03 m). Note: In Australia, this is different. The fridge rule applies (you can't stand in a fridge, the door always opens towards you). If the hinges are on the left then its a left hand (or left hung) door. If the hinges are on the right then its a right hand (or right hung) door. See the Australian Standards for Installation of Timber Doorsets, AS 1909-1984 pg 6. History. The earliest records are those represented in the paintings of the Egyptian tombs, in which they are shown as single or double doors, each in a single piece of wood. In Egypt, where the climate is intensely dry, there would be no fear of their warping, but in other countries it would be necessary to frame them, which according to Vitruvius (iv. 6.) was done with stiles (sea si) and rails "(see: Frame and panel)": the spaces enclosed being filled with panels (tympana) let into grooves made in the stiles and rails. The stiles were the vertical boards, one of which, tenoned or hinged, is known as the hanging stile, the other as the middle or meeting stile. The horizontal cross pieces are the top rail, bottom rail, and middle or intermediate rails. The most ancient doors were in timber, those made for King Solomon's temple being in olive wood (I Kings vi. 31-35), which were carved and overlaid with gold. The doors dwelt upon in Homer would appear to have been cased in silver or brass. Besides Olive wood, elm, cedar, oak and cypress were used. All ancient doors were hung by pivots at the top and bottom of the hanging stile which worked in sockets in the lintel and sill, the latter being always in some hard stone such as basalt or granite. Those found at Nippur by Dr. Hilprecht, dating from 2000 B.C. were in dolerite. The tenons of the gates at Balawat were sheathed with bronze (now in the British Museum). These doors or gates were hung in two leaves, each about wide and. high; they were encased with bronze bands or strips, 10 in. high, covered with repouss decoration of figures, etc. The wood doors would seem to have been about 3 in. thick, but the hanging stile was over diameter. Other sheathings of various sizes in bronze have been found, which proves this to have been the universal method adopted to protect the wood pivots. In the Hauran in Syria, where timber is scarce the doors were made in stone, and one measuring by is in the British Museum; the band on the meeting stile shows that it was one of the leaves of a double door. At Kuffeir near Bostra in Syria, Burckhardt found stone doors, 9 to. high, being the entrance doors of the town. In Etruria many stone doors are referred to by Dennis. The ancient Greek and Roman doors were either single doors, double doors, sliding doors or folding doors, in the last case the leaves were hinged and folded back. In Eumachia, is a painting of a door with three leaves. In the tomb of Theron at Agrigentum there is a single four-panel door carved in stone. In the Blundell collection is a bas-relief of a temple with double doors, each leaf with five panels. Among existing examples, the bronze doors in the church of SS. Cosmas and Damiano, in Rome, are important examples of Roman metal work of the best period; they are in two leaves, each with two panels, and are framed in bronze. Those of the Pantheon are similar in design, with narrow horizontal panels in addition, at the top, bottom and middle. Two other bronze doors of the Roman period are in the Lateran Basilica. Heron of Alexandria created the earliest known automatic door in the | Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes — some longhorn beetles (family Cerambycidae) and weevils — while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families — Dytiscidae, Haliplidae, many species of Hydrophilidae and others — the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. Reproduction. Beetles may display extremely intricate behaviour when mating. Pheromone communication is thought to be important in the location of a mate. Conflict can play a part in the mating rituals of species such as burying beetles (genus "Nicrophorus") where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilise the egg. Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young. Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Defense. Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of colouration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various coloured scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate. Another defence that often uses colour or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defence can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their colour mimicry with behavioural mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting colour patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically-protected species. Large ground beetles and longhorn beetles may defend themselves using strong mandibles and or spines or horns to forcibly persuade a predator to seek out easier prey. Others, such as bombardier beetles (within Carabidae), may spray chemicals from their abdomen to repel predators. Feeding. Besides being abundant and varied, the Coleoptera are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialised in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences. Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species such as certain scarab beetles (family Scarabaeidae), to dead animals, which are eaten by necrophagous species such as the carrion beetles (family Silphidae). Some of the beetles found within dung and carrion are in fact predatory, such as the clown beetles, preying on the larvae of coprophagous and necrophagous insects. Adaptations to the environment. Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention while whirligig beetles simply carry an air bubble down with them whenever they dive. Evolutionary history and classification. While some authorities believe modern beetles began about 140 million years ago, research announced in 2007 showed that beetles may have entered the fossil record during the Lower Permian, about 265 to 300 million years ago. The four extant suborders of beetle are these: These suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively. There are about 350,000 species of beetles. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. Pests. Many agricultural, forestry, and household insect pests are beetles. These include the following: Beneficial organisms. Some farmers develop beetle banks to foster and provide cover for beneficial beetles. Beetles of the Dermestidae family are often used in taxidermy to clean bones of remaining flesh. Beetles in ancient Egypt and other cultures. Several species of dung beetle, most notably "Scarabaeus sacer" (often referred to as "scarab"), enjoyed a sacred status among the ancient Egyptians, as the creatures were likened to the major god Khepri. Some scholars suggest that the Egyptians' practice of making mummies was inspired by the brooding process of the beetle. Many thousands of amulets and stamp seals have been excavated that depict the scarab. In many artifacts, the scarab is depicted pushing the sun along its course in the sky, much as scarabs push or roll balls of dung to their brood sites. During and following the New Kingdom, scarab amulets were often placed over the heart of the mummified deceased. Some tribal groups, particularly in tropical parts of the world, use the colourful, iridescent elytra of certain beetles, especially certain Scarabaeidae, in ceremonies and as adornment. Study and collection. The study of beetles is called coleopterology'" (from "Coleoptera", see above, and Greek, "-logia"), and its practitioners are "coleopterists" (see this list). Coleopterists have formed organisations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organisation based in the United States. Such organisations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are: There is a thriving industry in the collection of beetle specimens for amateur and professional collectors. Many coleopterists prefer to collect beetle specimens for themselves, recording detailed information about each specimen and its habitat. Such collections add to the body of knowledge about the Coleoptera. Some countries have established laws governing or prohibiting the collection of certain rare (and often much sought after) species. One such beetle whose collection is illegal or restricted is the American burying beetle, "Nicrophorus americanus". |