ratio of word probabilities predicted from brain for dog and butterfly

close this window

dog

butterfly

top 10 words in brain distribution (in article):
species animal male breed female human hunt wolf cat wild
top 10 words in brain distribution (in article):
species plant city fruit grow food state house tree leaf
top 10 words in brain distribution (not in article):
bird egg feed lion elephant insect forest deer habitat ant
top 10 words in brain distribution (not in article):
build store seed Unite street animal town home country pepper
times more probable under dog 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under butterfly
(words not in the model)
The dog'" ("Canis lupus familiaris",) is a domesticated subspecies of the gray wolf, a member of the Canidae family of the order Carnivora. The term is used for both feral and pet varieties. The domestic dog has been one of the most widely kept working and companion animals in human history. The domestication of the gray wolf took place in a handful of events roughly 15,000 years ago in central Asia. The dog quickly became ubiquitous across culture in all parts of the world, and was extremely valuable to early human settlements. For instance, it is believed that the successful emigration across the Bering Strait might not have been possible without sled dogs. As a result of the domestication process, the dog developed a sophisticated intelligence that includes unparalleled social cognition and a simple theory of mind that is important to their interaction with humans. These social skills have helped the dog to perform in myriad roles, such as hunting, herding, protection, and, more recently, assisting handicapped individuals. Currently, there are estimated to be 400 million dogs in the world. Over the 15,000 year span that the dog had been domesticated, it diverged into only a handful of landraces, groups of similar animals whose morphology and behavior have been shaped by environmental factors and functional roles. Humans did not take an active, intentional role in this process until the last few hundred years. As the modern understanding of genetics developed, humans began to intentionally breed dogs for a wide range of specific traits. Through this process, the dog has developed into hundreds of varied breeds, and shows more behavioral and morphological variation than any other land mammal. For example, height measured to the withers ranges from a few inches in the Chihuahua to a few feet in the Irish Wolfhound; color varies from white through grays (usually called "blue'") to black, and browns from light (tan) to dark ("red" or "chocolate") in a wide variation of patterns; coats can be short or long, coarse-haired to wool-like, straight, curly, or smooth. It is common for most breeds to shed this coat, but non-shedding breeds are also popular. Etymology and related terminology. "Dog" is the common use term that refers to members of the subspecies "Canis lupus familiaris". The term is sometimes used to refer to a wider range of species: it can be used to refer to any mammal belonging to the family Canidae, which includes wolves, foxes, jackals, and coyotes; it can be used to refer to the subfamily of Caninae, or the genus Canis, also often called the "true dogs". Some members of the family have "dog" in their common names, such as the raccoon dog and the African wild dog. A few animals have "dog" in their common names but are not canids, such as the prairie dog and the dog fish. The English word "dog" can be traced back to the Old English "docga", a "powerful breed of canine". The term may derive from Proto-Germanic "*dukkōn", represented in Old English "finger-docce" ("finger-muscle"). Due to the linguistically archaic structure of the word, the term "dog" may ultimately derive from the earliest layer of Proto-Indo-European vocabulary, reflecting the role of the dog as the earliest domesticated animal. The English word "hound", which refers to a specific breed group in English, means "dog" in general in other Germanic languages; it is cognate to German "hund", Dutch "hond", common Scandinavian "hund", and Icelandic "hundur". "Hound" itself is derived from the Proto-Indo-European "*kwon-", which is also the direct root of the Greek κυων (kuōn) and the indirect root of the Latin "canis" through the variant form "*kani-". In breeding circles, a male canine is referred to as a "dog", while a female is called a "bitch". A group of offspring is a "litter". The father of a litter is called the "sire", and the mother is called the "dam". Offspring are generally called "pups" or "puppies" until they are about a year old. The process of birth is "whelping". Taxonomy and evolution. The domestic dog was originally classified as "Canis familiaris" and "Canis familiarus domesticus" by Linnaeus in 1758, and is currently classified as "Canis lupus familiaris", a subspecies of the gray wolf "Canis lupus", by the Smithsonian Institution and the American Society of Mammalogists. Overwhelming evidence from behavior, vocalizations, morphology, and molecular biology led to the contemporary scientific understanding that a single species, the gray wolf, is the common ancestor for all breeds of domestic dogs, however the timeframe and mechanisms by which dogs diverged are controversial. The current consensus among biologists and archaeologists is that no one can be sure when dogs were domesticated. There is conclusive evidence that dogs genetically diverged from their wolf ancestors at least 15,000 years ago but most believe domestication to have occurred much earlier. The evidence cited for an earlier divergence comes from archaeological findings and mitochondrial DNA studies, both of which are inconclusive. The archaeological evidence demonstrates that the domestication of dogs occurred prior to 15,000 years ago. Some genetic evidence indicates that the domestication of dogs from their wolf ancestors began in the late Upper Paleolithic close to the Pleistocene Holocene boundary, between 17,000 and 14,000 years ago. The earliest dog fossils, two large skulls from Russia and a mandible from Germany, date from roughly 14,000 years ago. Their likely ancestor is the large Eurasian wolf ("Canis lupus lupus"). Remains of smaller dogs from Natufian cave deposits in the Middle East have been dated to around 10,000 to 12,000 years ago. There is a great deal of archealogical evidence for dogs throughout Europe and Asia around this period and through the next two thousand years (roughly 8,000 to 10,000 years ago), with fossils uncovered in Germany, the French Alps, and Iraq, and cave paintings in Turkey. DNA studies have provided a wider range of possible divergence dates, from 15,000 to 40,000 years ago, to as much as 100,000 to 140,000 years ago. This evidence depends on a number of assumptions that others claim are violated. Genetic studies are based in comparisons of genetic diversity between species, and depend on a calibration date, such as the wolf-coyote divergence date, which is estimated to be roughly 1 million years ago. If this divergence date is closer to 750,000 or 2 million years ago, then genetic analyses would be interpreted very differently. Furthermore, it is believed that the genetic diversity of wolves has been in decline for the last 200 years, and that the genetic diversity of dogs has been reduced by selective breeding, which could bias DNA analyses to support an earlier divergence. The genetic evidence for the domestication event occurring in East Asia is also subject to violations of assumptions. These conclusions are based on the location of maximal genetic divergence, assumes that hybridization does not occur, and that breeds remain geographically localized. Although these assumptions hold for many species, there is good reason to believe that they do not hold for canines. Genetic analyses indicate all dogs are likely descended from a handful of domestication events with a small number of founding females, although there is evidence that domesticated dogs interbred with local populations of wild wolves on several occasions. Data suggests that dogs first diverged from wolves in East Asia, and that these domesticated dogs then quickly migrated throughout the world, reaching the North American continent around 8000 B.C. The oldest groups of dogs, which show the greatest genetic variability and are the most similar to their wolf ancestors, are primarily Asian and African breeds, including the Basenji, Saluki, Afghan Hound, Tibetan Terrier, Lhasa Apso, Chow Chow, Pekingese, Shar-Pei, Shi Tzu, Akita, Shiba Inu, Alaskan Malamute, Siberian Husky, and Samoyed. Some breeds that were thought to be very old, such as the Pharaoh Hound, Ibizan Hound, and Norwegian Elkhound, are now known to have been recreated more recently. There is a great deal of controversy surrounding the evolutionary framework for the domestication of dogs. At least three early species of the "Homo" genus began spreading out of Africa roughly 400,000 years ago, and thus lived for a considerable period in contact with canine species. Despite this, there is no evidence of any adaptation of these canine species to the presence of the close relatives of modern man. If dogs were domesticated, as believed, roughly 15,000 years ago, the event (or events) would have coincided with a large expansion in human territory and the development of agriculture. This has led some biologists to suggest that one of the forces that led to the domestication of dogs was a shift in human lifestyle in the form of established human settlements. Permanent settlements would have coincided with a greater amount of disposable food and would have created a barrier between wild and anthropogenic canine populations. Biology. Domestic dogs have been selectively bred for millennia for various behaviors, sensory capabilities, and physical attributes. Modern dog breeds show more variation in size, appearance, and behavior than any other domestic animal. Nevertheless, their morphology is based on that of their wild ancestors, gray wolves. Dogs are predators and scavengers, and like many other predatory mammals, the dog has powerful muscles, fused wrist bones, a cardiovascular system that supports both sprinting and endurance, and teeth for catching and tearing. Dogs are highly variable in height and weight. The smallest known dog was a Yorkshire Terrier, who stood only 6.3 cm (2.5 in) at the shoulder, 9.5 cm (3.75 in) in length along the head-and-body, and weighed only 113 grams (4 ounces). The largest known dog was an English Mastiff which weighed 155.6 kg (343 lbs) and was 250 cm (8.2 feet) from the snout to the tail. The tallest dog is a Great Dane that stands 106.7 cm (42.2 in) at the shoulder. Sight. The dog's visual system is engineered to serve the purposes of a hunter. While a dog's visual acuity is poor (that of a poodle's has been estimated to translate to a Snellen rating of 20 75), their visual discrimination for moving objects is very high; dogs have been shown to be able to discriminate between humans (i.e., identifying their owner) from distances up to a mile. As crepuscular hunters, dogs often rely on their vision in low light situations: they have very large pupils, a high density of rods in the fovea, an increased flicker rate, and a tapetum lucidum. The tapetum is a reflective surface behind the retina that reflects light back to give the photoreceptors a second chance to catch the photons. Like most mammals, dogs are dichromats and have color vision equivalent to red-green color blindness in humans. The eyes of different breeds of dogs have different shapes, dimensions, and retina configurations. Many long-nosed breeds have a "visual streak" a wide foveal region that runs across the width of the retina and gives them a very wide field of excellent vision. Some long-muzzled breeds, particularly the sighthounds, have a field of vision up to 270° (compared to 180° for humans). Short-nosed breeds, on the other hand, have an "area centralis": a central patch with up to three times the density of nerve endings as the visual streak, giving them detailed sight much more like a human's. Some broad-headed breeds with short noses have a field of vision similar to that of humans. Most breeds have good vision, but some show a genetic predisposition for myopia such as Rottweilers, where one out of every two has been found to be myopic. Hearing. The frequency range of dog hearing is approximately 40 Hz to 60,000 Hz, which means that dogs can detect sounds outside both ends of the human auditory spectrum. Additionally, dogs have ear mobility which allows them to rapidly pinpoint the exact location of a sound. Eighteen or more muscles can tilt, rotate, raise, or lower a dog's ear. A dog can identify a sound's location much faster than a human can, as well as hear sounds at four times the distance. Smell. While the human brain is dominated by a large visual cortex, the dog brain is largely dominated by an olfactory cortex. The olfactory bulb in dogs is roughly forty times bigger than the olfactory bulb in humans, relative to total brain size, with 125 to 220 million smell-sensitive receptors. The bloodhound exceeds this standard with nearly 300 million receptors. Dogs can discriminate odors at concentrations nearly 100 million times lower than humans can. Coat. The coats of domestic dogs are either "double", made up of a coarse topcoat and a soft undercoat, like a wolf, or "single", with the topcoat only. Dogs with double coats tend to originate in colder climates. Domestic dogs often display the remnants of countershading, a common natural camouflage pattern. The general theory of countershading is that an animal that is lit from above will appear lighter on its upper half and darker on its lower half, where it will usually be in its own shade. This is a pattern that predators can learn to watch for. A countershaded animal will have dark coloring on its upper surfaces and light coloring below, which reduces its general visibility. Thus many breeds will have an occasional "blaze", stripe, or "star" of white fur on their chest or underside. Tail. There are many different shapes for dog tails: straight, straight up, sickle, curled, or cork-screw. In some breeds, the tail is traditionally docked to avoid injuries (especially for hunting dogs). In some breeds, puppies can be born with a short tail or no tail at all. This occurs more frequently in those breeds that are frequently docked and thus have no breed standard regarding the tail. Types and breeds. While all dogs are genetically very similar, natural selection and selective breeding have reinforced certain characteristics in certain populations of dogs, giving rise to dog types and dog breeds. Dog types are broad categories based on function, genetics, or characteristics. Dog breeds are groups of animals that possess a set of inherited characteristics that distinguishes them from other animals within the same species. Modern dog breeds are non-scientific classifications of dogs kept by modern kennel clubs. Purebred dogs of one breed are genetically distinguishable from purebred dogs of other breeds, but the means by which kennel clubs classify dogs is unsystematic. Systematic analyses of the dog genome has revealed only four major types of dogs that can be said to be statistically distinct. These include the "old world dogs" (e.g., Malamute and Shar-Pei), "Mastiff"-type (e.g., Labrador Retriever), "herding"-type (e.g., St. Bernard), and "all others" (also called "modern"- or "hunting"-type). Health. Dogs are susceptible to various diseases, ailments, and poisons, some of which can affect humans. To defend against many common diseases, dogs are often vaccinated. Some breeds of dogs are prone to certain genetic ailments such as elbow or hip dysplasia, blindness, deafness, pulmonic stenosis, cleft palate, and trick knees. Two serious medical conditions particularly affecting dogs are pyometra, affecting unspayed females of all types and ages, and bloat, which affects the larger breeds or deep-chested dogs. Both of these are acute conditions, and can kill rapidly. Dogs are also susceptible to parasites such as fleas, ticks, and mites, as well as hookworms, tapeworms, roundworms, and heartworms. Dogs are also vulnerable to some of the same health conditions as humans, including diabetes, dental and heart disease, epilepsy, cancer, hypothyroidism, and arthritis. Mortality. The typical lifespan of dogs varies widely among breeds, but for most the median longevity, the age at which half the dogs in a population have died and half are still alive, ranges from 10 to 13 years. Individual dogs may live well beyond the median of their breed. The breed with the shortest lifespan (among breeds for which there is a questionnaire survey with a reasonable sample size) is the Dogue de Bordeaux, with a median longevity of about 5.2 years, but several breeds, including Miniature Bull Terriers, Bulldogs, Nova Scotia Duck-Tolling Retrievers, Bloodhounds, Irish Wolfhounds, Greater Swiss Mountain Dogs, Great Danes, and Mastiffs, are nearly as short-lived, with median longevities of 6 to 7 years. The longest-lived breeds, including Toy Poodles, Border Terriers, Miniature Dachshunds, Miniature Poodles, and Tibetan Spaniels, have median longevities of 14 to 15 years. The median longevity of mixed breed dogs, taken as an average of all sizes, is one or more years longer than that of purebred dogs when all breeds are averaged. The dog widely reported to be the longest-lived is "Bluey," who died in 1939 and was claimed to be 29.5 years old at the time of his death; however, the Bluey record is anecdotal and unverified. The longest verified records are of dogs living for 24 years. Predation. Although wild dogs, like wolves, are apex predators, they can be killed in territory disputes with wild animals. Furthermore, in areas where both dogs and other large predators live, dogs can be a major food source for big cats or canines. Reports from Croatia indicate that dogs are killed more frequently than sheep. Wolves in Russia apparently limit feral dog populations. In Wisconsin, more compensation has been paid for dog losses than livestock. Some wolf pairs have been reported to prey on dogs by having one wolf lure the dog out into heavy brush where the second animal waits in ambush. In some instances, wolves have displayed an uncharacteristic fearlessness of humans and buildings when attacking dogs, to the extent that they have to be beaten off or killed. Coyotes and big cats have also been known to attack dogs. Leopards in particular are known to have a predilection for dogs, and have been recorded to kill and consume them regardless of the dog's size or ferocity. Tigers in Manchuria, Indochina, Indonesia, and Malaysia, are reputed to kill dogs with the same vigor as leopards. Striped Hyenas are major predators of village dogs in Turkmenistan, India, and the Caucasus. Diet. Despite its descent from wolves, the domestic dog is an omnivore, though it is classified in the order Carnivora. Unlike an obligate carnivore, such as a member of the cat family with its shorter small intestine, a dog is neither dependent on meat-specific protein nor a very high level of protein in order to fulfill its basic dietary requirements. Dogs are able to healthily digest a variety of foods, including vegetables and grains, and can consume a large proportion of these in their diet. In the wild, canines often eat available plants and fruits. Reproduction. In domestic dogs, sexual maturity begins to happen around age six to twelve months for both males and females, although this can be delayed until up to two years old for some large breeds. This is the time at which female dogs will have their first estrous cycle. They will experience subsequent estrous cycles biannually, during which the body prepares for pregnancy. At the peak of the cycle, females will come into estrus, being mentally and physically receptive to copulation. Because the ova survive and are capable of being fertilized for a week after ovulation, it is possible for a female to mate with more than one male. Adolescence for most domestic dogs is around 12 to 15 months, beyond which they are for the most part more adult than puppy. Domestication has selectively bred for higher libido and earlier and more frequent breeding cycles in dogs than in their wild ancestors, and dogs remain reproductively active until old age. Dogs bear their litters roughly 56 to 72 days after fertilization, with an average of 63 days, although the length of gestation can vary. An average litter consists of about six puppies, though this number may vary widely based on the breed of dog. Toy dogs generally produce from one to four puppies in each litter, while much larger breeds may average as many as twelve. Some dog breeds have acquired traits through selective breeding that interfere with reproduction. Male French Bulldogs, for instance, are incapable of mounting the female. For many dogs of this breed, the female must be artificially inseminated in order to reproduce. Spaying and neutering. Neutering refers to the sterilization of animals, usually by removal of the male's testicles or the female's ovaries and uterus, in order to eliminate the ability to procreate and reduce sex drive. Because of the overpopulation of dogs in some countries, animal control agencies, such as the American Society for the Prevention of Cruelty to Animals (ASPCA), advise that dogs not intended for further breeding should be neutered, so that they do not have undesired puppies that may have to be destroyed later. According to the Humane Society of the United States, 3–4 million dogs and cats are put down each year in the United States and many more are confined to cages in shelters because there are many more animals than there are homes. Spaying or castrating dogs helps keep overpopulation down. Local humane societies, SPCAs, and other animal protection organizations urge people to neuter their pets and to adopt animals from shelters instead of purchasing them. Several notable public figures have spoken out against animal overpopulation, including Bob Barker. On his game show, "The Price Is Right", Barker stressed the problem at the end of every episode, saying: "Help control the pet population. Have your pets spayed or neutered." The current host, Drew Carey, makes a similar plea at the conclusion of each episode. Neutering reduces problems caused by hypersexuality, especially in male dogs. A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in obtect pupae). Within hours, the wings form a cuticle so hard and well-joined to the body that pupae can be picked up and handled without damage to the wings. Pupa. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding and begins "wandering" in the quest of a suitable pupation site, often the underside of a leaf. The larva transforms into a pupa (or chrysalis) by anchoring itself to a substrate and moulting for the last time. The chrysalis is usually incapable of movement, although some species can rapidly move the abdominal segments or produce sounds to scare potential predators. The pupal transformation into a butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in the adult color pattern are marked by changes in the expression of particular transcription factors in the early pupa. Adult or imago. The adult, sexually mature, stage of the insect is known as the imago. As Lepidoptera, butterflies have four wings that are covered with tiny scales (see photo). The fore and hindwings are not hooked together, permitting a more graceful flight. An adult butterfly has six legs, but in the nymphalids, the first pair is reduced. After it emerges from its pupal stage, a butterfly cannot fly until the wings are unfolded. A newly-emerged butterfly needs to spend some time inflating its wings with blood and letting them dry, during which time it is extremely vulnerable to predators. Some butterflies' wings may take up to three hours to dry while others take about one hour. Most butterflies and moths will excrete excess dye after hatching. This fluid may be white, red, orange, or in rare cases, blue. External morphology. Butterflies have two antennae, two compound eyes, and a proboscis. Adult butterflies have four wings: a forewing and hindwing on both the left and the right side of the body. The body is divided into three segments: the head, thorax, and the abdomen. They have two antennae, two compound eyes, and a proboscis. Scales. Butterflies are characterized by their scale-covered wings. The coloration of butterfly wings is created by minute scales. These scales are pigmented with melanins that give them blacks and browns, but blues, greens, reds and iridescence are usually created not by pigments but the microstructure of the scales. This structural coloration is the result of coherent scattering of light by the photonic crystal nature of the scales. The scales cling somewhat loosely to the wing and come off easily without harming the butterfly. Polymorphism. Many adult butterflies exhibit polymorphism, showing differences in appearance. These variations include geographic variants and seasonal forms. In addition many species have females in multiple forms, often with mimetic forms. Sexual dimorphism in coloration and appearance is widespread in butterflies. In addition many species show sexual dimorphism in the patterns of ultraviolet reflectivity, while otherwise appearing identical to the unaided human eye. Most of the butterflies have a sex-determination system that is represented as ZW with females being the heterogametic sex (ZW) and males homogametic (ZZ). Genetic abnormalities such as gynandromorphy also occur from time to time. In addition many butterflies are infected by "Wolbachia" and infection by the bacteria can lead to the conversion of males into females or the selective killing of males in the egg stage. Mimicry. Batesian and Mullerian mimicry in butterflies is common. Batesian mimics imitate other species to enjoy the protection of an attribute they do not share, aposematism in this case. The Common Mormon of India has female morphs which imitate the unpalatable red-bodied swallowtails, the Common Rose and the Crimson Rose. Mullerian mimicry occurs when aposematic species evolve to resemble each other, presumably to reduce predator sampling rates, the Heliconius butterflies from the Americas being a good example. Wing markings called eyespots are present in some species; these may have an automimicry role for some species. In others, the function may be intraspecies communication, such as mate attraction. In several cases, however, the function of butterfly eyespots is not clear, and may be an evolutionary anomaly related to the relative elasticity of the genes that encode the spots. Seasonal polyphenism. div name="wet-dry forms" Many of the tropical butterflies have distinctive seasonal forms. This phenomenon is termed "seasonal polyphenism" and the seasonal forms of the butterflies are called the dry-season and wet-season forms. How the season affects the genetic expression of patterns is still a subject of research. Experimental modification by ecdysone hormone treatment has demonstrated that it is possible to control the continuum of expression of variation between the wet and dry-season forms. The dry-season forms are usually more cryptic and it has been suggested that the protection offered may be an adaptation. Some also show greater dark colours in the wet-season form which may have thermoregulatory advantages by increasing ability to absorb solar radiation. Habits. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen, tree sap, rotting fruit, dung, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants although in general they do not carry as much pollen load as the Hymenoptera. They are however capable of moving pollen over greater distances. Within the Lepidoptera, the Hawkmoths and the Noctuidae are dominant as pollinators. As adults, butterflies consume only liquids and these are sucked by means of their proboscis. They feed on nectar from flowers and also sip water from damp patches. This they do for water, for energy from sugars in nectar and for sodium and other minerals which are vital for their reproduction. Several species of butterflies need more sodium than provided by nectar. They are attracted to sodium in salt and they sometimes land on people, attracted by human sweat. Besides damp patches, some butterflies also visit dung, rotting fruit or carcasses to obtain minerals and nutrients. In many species, this Mud-puddling behaviour is restricted to the males and studies have suggested that the nutrients collected are provided as a nuptial gift along with the spermatophore during mating. Butterflies sense the air for scents, wind and nectar using their antennae. The antennae come in various shapes and colours. The hesperids have a pointed angle or hook to the antennae, while most other families show knobbed antennae. The antennae are richly covered with sensillae. A butterfly's sense of taste is coordinated by chemoreceptors on the tarsi, which work only on contact, and are used to determine whether an egg-laying insect's offspring will be able to feed on a leaf before eggs are laid on it. Many butterflies use chemical signals, pheromones, and specialized scent scales (androconia) and other structures (coremata or 'Hair pencils' in the Danaidae) are developed in some species. Vision is well developed in butterflies and most species are sensitive to the ultraviolet spectrum. Many species show sexual dimorphism in the patterns of UV reflective patches. Color vision may be widespread but has been demonstrated in only a few species. Some butterflies have organs of hearing and some species are also known to make stridulatory and clicking sounds. Many butterflies, such as the Monarch butterfly, are migratory and capable of long distance flights. They migrate during the day and use the sun to orient themselves. They also perceive polarized light and use it for orientation when the sun is hidden. Many species of butterfly maintain territories and actively chase other species or individuals that may stray into them. Some species will bask or perch on chosen perches. The flight styles of butterflies are often characteristic and some species have courtship flight displays. Basking is an activity which is more common in the cooler hours of the morning. Many species will orient themselves to gather heat from the sun. Some species have evolved dark wingbases to help in gathering more heat and this is especially evident in alpine forms. Flight. Like many other members of the insect world, the lift generated by butterflies is more than what can be accounted for by steady-state, non-transitory aerodynamics. Studies using "Vanessa atalanta" in a windtunnel show that they use a wide variety of aerodynamic mechanisms to generate force. These include wake capture, vortices at the wing edge, rotational mechanisms and Weis-Fogh 'clap-and-fling' mechanisms. The butterflies were also able to change from one mode to another rapidly. (See also Insect flight) Migration. Many butterflies migrate over long distances. Particularly famous migrations being those of the Monarch butterfly from Mexico to North America, a distance of about 4,000 to 4,800 kilometres (2500-3000 miles). Other well known migratory species include the Painted Lady and several of the Danaine butterflies. Spectacular and large scale migrations associated with the Monsoons are seen in peninsular India. Migrations have been studied in more recent times using wing tags and also using stable hydrogen isotopes. Butterflies have been shown to navigate using time compensated sun compasses. They can see polarized light and therefore orient even in cloudy conditions. The polarized light in the region close to the ultraviolet spectrum is suggested to be particularly important. It is suggested that most migratory butterflies are those that belong to semi-arid areas where breeding seasons are short. The life-histories of their host plants also influence the strategies of the butterflies. Defense. Butterflies are threatened in their early stages by parasitoids and in all stages by predators, diseases and environmental factors. They protect themselves by a variety of means. Chemical defenses are widespread and are mostly based on chemicals of plant origin. In many cases the plants themselves evolved these toxic substances as protection against herbivores. Butterflies have evolved mechanisms to sequester these plant toxins and use them instead in their own defense. These defense mechanisms are effective only if they are also well advertised and this has led to the evolution of bright colours in unpalatable butterflies. This signal may be mimicked by other butterflies. These mimetic forms are usually restricted to the females. Cryptic coloration is found in many butterflies. Some like the oakleaf butterfly are remarkable imitations of leaves. As caterpillars, many defend themselves by freezing and appearing like sticks or branches. Some papilionid caterpillars resemble bird dropping in their early instars. Some caterpillars have hairs and bristly structures that provide protection while others are gregarious and form dense aggregations. Some species also form associations with ants and gain their protection (See Myrmecophile). Behavioural defenses include perching and wing positions to avoid being conspicuous. Some female Nymphalid butterflies are known to guard their eggs from parasitoid wasps. Eyespots and tails are found in many lycaenid butterflies and these divert the attention of predators from the more vital head region. An alternative theory is that these cause ambush predators such as spiders to approach from the wrong end and allow for early visual detection. A butterfly's hind wings are thought to allow the butterfly to take, swift, tight turns to evade predators. Notable species. There are between 15,000 and 20,000 species of butterflies worldwide. Some well known species from around the world include: Art. Artistic depictions of butterflies have been used in many cultures including Egyptian hieroglyphs 3500 years ago. Today, butterflies are widely used in various objects of art and jewelry: mounted in frame, embedded in resin, displayed in bottles, laminated in paper, and used in some mixed media artworks and furnishings. Butterflies have also inspired the "butterfly fairy" as an art and fictional character. Symbolism. According to the “Butterflies” chapter in by Lafcadio Hearn, a butterfly is seen as the personification of a person's soul; whether they be living, dying, or already dead. One Japanese superstition says that if a butterfly enters your guestroom and perches behind the bamboo screen, the person whom you most love is coming to see you. However, large numbers of butterflies are viewed as bad omens. When Taira no Masakado was secretly preparing for his famous revolt, there appeared in Kyoto so vast a swarm of butterflies that the people were frightened -thinking the apparition to be a portent of coming evil. The Russian word for "butterfly", бабочка ("bábochka"), also means "bow tie". It is a diminutive of "baba" or "babka" ("woman, grandmother, cake", whence also "babushka"= "grandmother". The Ancient Greek word for "butterfly" is ψυχή ("psȳchē"), which primarily means "soul", "mind". According to Mircea Eliade's "Encyclopedia of Religion", some of the Nagas of Manipur trace their ancestry from a butterfly. In Chinese culture two butterflies flying together are a symbol of love. Also a famous Chinese folk story called Butterfly Lovers. The Taoist philosopher Zhuangzi once had a dream of being a butterfly flying without care about humanity, however when he woke up and realized it was just a dream, he thought to himself "Was I before a man who dreamt about being a butterfly, or am I now a butterfly who dreams about being a man?" In some old cultures, butterflies also symbolize rebirth into a new life after being inside a cocoon for a period of time. Jose Rizal delivered a speech in 1884 in a banquet and mentioned "the Oriental chrysalis... is about to leave its cocoon" comparing the emergence of a "new Philippines" with that of butterfly metamorphosis. He has also often used the butterfly imagery in his poems and other writings to express the Spanish Colonial Filipinos' longing for liberty. Much later, in a letter to Ferdinand Blumentritt, Rizal compared his life in exile to a weary butterfly with sun-burnt wings. Some people say that when a butterfly lands on you it means good luck. However, in Devonshire, people would traditionally rush around to kill the first butterfly of the year that they see, or else face a year of bad luck. Also, in the Philippines, a lingering black butterfly or moth in the house is taken to mean that someone in the family has died or will soon die. The idiom "butterflies in the stomach" is used to describe a state of nervousness. Technological inspiration. Researches on the wing structure of Palawan Birdwing butterflies led to new wide wingspan kite and aircraft designs. Studies on the reflection and scattering of light by the scales on wings of swallowtail butterflies led to the innovation of more efficient light-emitting diodes. The structural coloration of butterflies is inspiring nanotechnology research to produce paints that do not use toxic pigments and in the development of new display technologies. Furthermore, the discoloration and health of butterflies in butterfly farms, is now being studied for use as indicators of air quality in several cities.