ratio of word probabilities predicted from brain for chimney and pliers

close this window

chimney

pliers

top 10 words in brain distribution (in article):
build power wood design station line wall structure locomotive type
top 10 words in brain distribution (in article):
steel head cut handle metal tool design hand material edge
top 10 words in brain distribution (not in article):
material church train signal paint radio size electric frequency surface
top 10 words in brain distribution (not in article):
iron blade fiber hair century sheep type produce size shape
times more probable under chimney 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under pliers
(words not in the model)
A chimney'" is a structure for venting hot flue gases or smoke from a boiler, stove, furnace or fireplace to the outside atmosphere. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney, effect. The space inside a chimney is called a "flue". Chimneys may be found in buildings, steam locomotives and ships. In the US, the term smokestack'" (colloquially, "'stack'") is also used when referring to locomotive chimneys. The term "'funnel'" is generally used for ships' chimneys and sometimes to refer to locomotive chimneys.. Chimneys are tall to increase their draw of air for combustion and to disperse pollutants in the flue gases over a greater area so as to reduce the pollutant concentrations in compliance with regulatory or other limits. History. Romans used tubes inside the walls to draw smoke out of bakeries but real chimneys appeared only in northern Europe in the 12th century. Industrial chimneys became common in the late 18th century. The earliest extant example of an English chimney is at Conisborough Keep in Yorkshire, which dates from 1185 AD. Chimneys have traditionally been built of brick, both in small and large buildings. Early chimneys were of a simple brick construction. Later chimneys were constructed by placing the bricks around tile liners. To control downdrafts venting caps (often called "chimney pots") with a variety of designs are sometimes placed on the top of chimneys. In the eighteenth and nineteenth centuries, the methods used to extract lead from its ore produced large amounts of toxic fumes. In the north of England, long near-horizontal chimneys were built, often more than 3 km (2 mi) long, which typically terminated in a short vertical chimney in a remote location where the fumes would cause less harm. Lead and silver deposits formed on the inside of these long chimneys, and periodically workers would be sent along the chimneys to scrape off these valuable deposits. Construction. Due to brick's limited ability to handle transverse loads, chimneys in houses were often built in a "stack", with a fireplace on each floor of the house sharing a History. Pliers in the general sense are an ancient and simple invention, no singular point in history or singular inventor can be credited. Early metal working processes from several millennia BC would have required plier-like devices to handle hot materials in the process of smithing or casting. Development from wooden to bronze pliers would have probably happened sometime prior to 3000 BC. Among the oldest illustrations of pliers are those showing the Greek god Hephaestus in his smithy. Today, pliers intended principally to be used for safely handling hot objects are usually called tongs. The number of different designs of pliers grew with the invention of the different objects which they were used to handle: horse shoes, fasteners, wire, pipes, electrical and electronic components. Design. The basic design of pliers has changed little since their origins, with the pair of "handles", the "pivot" (often formed by a rivet), and the "head" section with the gripping jaws or cutting edges forming the three elements. In distinction to a pair of scissors or shears, the plier's jaws always meet each other at one pivot angle. Pliers are an instrument that convert a power grip—the curling of the fingers into the palm of the hand—into a precision grip, directing the power of the hand's grip in a precise fashion on to the objects to be gripped. The handles are long relative to the shorter nose of the pliers. The two arms thus act as first class levers with a mechanical advantage, increasing the force applied by the hand's grip and concentrating it on the work piece. The materials used to make pliers consist mainly of steel alloys with additives such as vanadium or chromium, to improve alloy strength and prevent corrosion. Often pliers have insulated grips to ensure better handling and prevent electrical conductivity. In some lines of fine work (such as jewellery or musical instrument repair), some specialised pliers feature a layer of comparatively soft metal (such as brass) over the two plates of the head of the pliers to reduce pressure placed on some fine tools or materials. Making entire pliers out of softer metals would be impractical, reducing the strength required to break or bend them.