butterfly |
truck |
top 10 words in brain distribution (in article): plant species city fruit grow state food tree house leaf |
top 10 words in brain distribution (in article): vehicle wheel gear car passenger speed drive truck seat transmission |
top 10 words in brain distribution (not in article): animal seed store build Unite street town home wild country |
top 10 words in brain distribution (not in article): aircraft design tornado pole wind elevator belt flight safety cyclone |
times more probable under butterfly 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under truck (words not in the model) | |
A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in obtect pupae). Within hours, the wings form a cuticle so hard and well-joined to the body that pupae can be picked up and handled without damage to the wings. Pupa. When the larva is fully grown, hormones such as prothoracicotropic hormone (PTTH) are produced. At this point the larva stops feeding and begins "wandering" in the quest of a suitable pupation site, often the underside of a leaf. The larva transforms into a pupa (or chrysalis) by anchoring itself to a substrate and moulting for the last time. The chrysalis is usually incapable of movement, although some species can rapidly move the abdominal segments or produce sounds to scare potential predators. The pupal transformation into a butterfly through metamorphosis has held great appeal to mankind. To transform from the miniature wings visible on the outside of the pupa into large structures usable for flight, the pupal wings undergo rapid mitosis and absorb a great deal of nutrients. If one wing is surgically removed early on, the other three will grow to a larger size. In the pupa, the wing forms a structure that becomes compressed from top to bottom and pleated from proximal to distal ends as it grows, so that it can rapidly be unfolded to its full adult size. Several boundaries seen in the adult color pattern are marked by changes in the expression of particular transcription factors in the early pupa. Adult or imago. The adult, sexually mature, stage of the insect is known as the imago. As Lepidoptera, butterflies have four wings that are covered with tiny scales (see photo). The fore and hindwings are not hooked together, permitting a more graceful flight. An adult butterfly has six legs, but in the nymphalids, the first pair is reduced. After it emerges from its pupal stage, a butterfly cannot fly until the wings are unfolded. A newly-emerged butterfly needs to spend some time inflating its wings with blood and letting them dry, during which time it is extremely vulnerable to predators. Some butterflies' wings may take up to three hours to dry while others take about one hour. Most butterflies and moths will excrete excess dye after hatching. This fluid may be white, red, orange, or in rare cases, blue. External morphology. Butterflies have two antennae, two compound eyes, and a proboscis. Adult butterflies have four wings: a forewing and hindwing on both the left and the right side of the body. The body is divided into three segments: the head, thorax, and the abdomen. They have two antennae, two compound eyes, and a proboscis. Scales. Butterflies are characterized by their scale-covered wings. The coloration of butterfly wings is created by minute scales. These scales are pigmented with melanins that give them blacks and browns, but blues, greens, reds and iridescence are usually created not by pigments but the microstructure of the scales. This structural coloration is the result of coherent scattering of light by the photonic crystal nature of the scales. The scales cling somewhat loosely to the wing and come off easily without harming the butterfly. Polymorphism. Many adult butterflies exhibit polymorphism, showing differences in appearance. These variations include geographic variants and seasonal forms. In addition many species have females in multiple forms, often with mimetic forms. Sexual dimorphism in coloration and appearance is widespread in butterflies. In addition many species show sexual dimorphism in the patterns of ultraviolet reflectivity, while otherwise appearing identical to the unaided human eye. Most of the butterflies have a sex-determination system that is represented as ZW with females being the heterogametic sex (ZW) and males homogametic (ZZ). Genetic abnormalities such as gynandromorphy also occur from time to time. In addition many butterflies are infected by "Wolbachia" and infection by the bacteria can lead to the conversion of males into females or the selective killing of males in the egg stage. Mimicry. Batesian and Mullerian mimicry in butterflies is common. Batesian mimics imitate other species to enjoy the protection of an attribute they do not share, aposematism in this case. The Common Mormon of India has female morphs which imitate the unpalatable red-bodied swallowtails, the Common Rose and the Crimson Rose. Mullerian mimicry occurs when aposematic species evolve to resemble each other, presumably to reduce predator sampling rates, the Heliconius butterflies from the Americas being a good example. Wing markings called eyespots are present in some species; these may have an automimicry role for some species. In others, the function may be intraspecies communication, such as mate attraction. In several cases, however, the function of butterfly eyespots is not clear, and may be an evolutionary anomaly related to the relative elasticity of the genes that encode the spots. Seasonal polyphenism. div name="wet-dry forms" Many of the tropical butterflies have distinctive seasonal forms. This phenomenon is termed "seasonal polyphenism" and the seasonal forms of the butterflies are called the dry-season and wet-season forms. How the season affects the genetic expression of patterns is still a subject of research. Experimental modification by ecdysone hormone treatment has demonstrated that it is possible to control the continuum of expression of variation between the wet and dry-season forms. The dry-season forms are usually more cryptic and it has been suggested that the protection offered may be an adaptation. Some also show greater dark colours in the wet-season form which may have thermoregulatory advantages by increasing ability to absorb solar radiation. Habits. Butterflies feed primarily on nectar from flowers. Some also derive nourishment from pollen, tree sap, rotting fruit, dung, and dissolved minerals in wet sand or dirt. Butterflies are important as pollinators for some species of plants although in general they do not carry as much pollen load as the Hymenoptera. They are however capable of moving pollen over greater distances. Within the Lepidoptera, the Hawkmoths and the Noctuidae are dominant as pollinators. As adults, butterflies consume only liquids and these are sucked by means of their proboscis. They feed on nectar from flowers and also sip water from damp patches. This they do for water, for energy from sugars in nectar and for sodium and other minerals which are vital for their reproduction. Several species of butterflies need more sodium than provided by nectar. They are attracted to sodium in salt and they sometimes land on people, attracted by human sweat. Besides | A truck'" is a type of motor vehicle commonly used for carrying goods and materials. Some light trucks are relatively small, similar in size to a passenger automobile. Commercial transportation or fire trucks can be quite large and can also serve as a platform for specialized equipment. Etymology. The word "truck" possibly derives from the Greek "trochos" (τροχός =wheel). In North America, certain kinds of big wheels were called "trucks". When the gasoline-engine driven trucks came into fashion, these were called "motor trucks." International variance. In the United States and Canada "truck" is usually reserved for commercial vehicles larger than normal cars, and for pickups and other vehicles having an open load bed. In the United Kingdom and the Republic of Ireland, "lorry" is used as well as "truck", but only used for the medium and heavy types (see below); "i.e." a van, a pickup or an off-road four-wheel drive vehicle such as a Jeep would never be regarded as a lorry in these countries, unlike in the United States (it should be noted, however, that the term lorry is not used in the United States). The same applies to the initials "HGV" (for Heavy Goods Vehicle) which is basically synonymous with "lorry". The word "truck" is also accepted in these countries, and can apply to large vans as well as to lorries ("i.e." its scope is slightly wider). In the UK vernacular, "wagon" is still commonly used to describe various larger vehicles. Though the US term station wagon is occasionally used in the UK, it can cause confusion (despite retaining the US definition), so the societal term estate car remains widely popular. "Lorry" is also used in Hong Kong. In South Africa, the word "kombi" is used, based on its Afrikaans equivalent. The word "lorry" is also used in Cambodia, although here it can refer to a train. In Australia and New Zealand, a pickup truck (a relatively small, usually car- or van-derived vehicle, with an open back body) is called a ute'" (short for "utility") and the word "truck" or "lorry" is reserved for larger vehicles. Other languages have loanwords based on these terms, such as the Malay language and the Spanish language in northern Mexico. A commonly understood term for truck across many European countries is "'camion'". Camion is also used in Quebec to identify trucks in French. Additionally, from the German language the initials "PKW" ("'P'"ersonen"'K'"raft"'W'"agen or passenger carrying vehicle) for a car van or small truck) and "LKW" ("'L'"ast"'K'"raft"'W'"agen or cargo load freight carrying vehicle) for larger trucks are understood. In U.S. English the word "truck" is used in the names of particular types of truck, such as a "fire truck" or "tanker truck". Note that in British English these would be a "fire engine" and "tanker" respectively. Driving. In the United States a commercial driver's license is required to drive any type of vehicle weighing 26,001 lbs (11,800 kg) or more. In the United Kingdom there are complex rules; as an overview, to drive a vehicle weighing more than 7,500 kg for commercial purposes requires a specialist license (the type varies depending on the use of the vehicle and number of seats). For licenses first acquired after 1997, that weight was reduced to 3,500 kg, not including trailers. In the Australia a truck driving license is required for any motor vehicle with a GVM exceeding 4500 kg. The motor vehicles classes are further expanded as "'LR/MR'" (Light Medium rigid up to 8000 kg GVM + trailer to maximum GCM 8000 kg), "'HR'" (Heavy Rigid +trailer up to GCM 9000 kg), "'HC'" (Heavy Combination, a typical prime mover +semi trailer combination) and the "'MC'" (Multi Combination e.g B Doubles Road trains). There is also a heavy vehicle transmission condition for a licence class HR, HC or MC in a vehicle fitted with an automatic or synchromesh transmission, driver’s licence will restrict to vehicles of that class fitted with a synchromesh or automatic transmission. To have the condition removed, a person needs to pass a practical driving test in a vehicle with non synchromesh transmission (constant mesh or crash box). Engine. The oldest truck was built in 1896 by Gottlieb Daimler. Small trucks such as SUVs or pickups, and even light medium-duty trucks in North America and Russia will use gasoline engines. Most heavier trucks use four stroke turbo intercooler diesel engines. Huge off-highway trucks use locomotive-type engines such as a V12 Detroit Diesel two stroke engine. North American manufactured highway trucks almost always use an engine built by a third party, such as CAT, Cummins, or Detroit Diesel. The only exceptions to this are Volvo and its subsidiary Mack Trucks, which are available with their own engines. Freightliner Trucks, Sterling Trucks and Western Star, subsidiaries of Daimler AG, are available with Mercedes-Benz and Detroit Diesel engines. Trucks and buses built by Navistar International usually also contain International engines. The Swedish manufacturer Scania claims they stay away from the U.S. market because of this third party tradition. In the European Union all new truck engines must comply with Euro 5 regulations. Drivetrain. Small trucks use the same type of transmissions as almost all cars, having either an automatic transmission or a manual transmission with synchronisers. Bigger trucks often use manual transmissions without synchronisers, saving bulk and weight, although synchromesh transmissions are used in larger trucks as well. Transmissions without synchronizers, known as "crash boxes", require double-clutching for each shift, (which can lead to repetitive motion injuries), or a technique known colloquially as "floating," a method of changing gears which doesn't use the clutch, except for starts and stops, due to the physical effort of double clutching, especially with non power assisted clutches, faster shifts, and less clutch wear. Double-clutching allows the driver to control the engine and transmission revolutions to synchronize, so that a smooth shift can be made, "e.g.," when upshifting, the accelerator pedal is released and the clutch pedal is depressed while the gear lever is moved into neutral, the clutch pedal is then released and quickly pushed down again while the gear lever is moved to the next highest gear. Finally, the clutch pedal is released and the accelerator pedal pushed down to obtain required engine speed. Although this is a relatively fast movement, perhaps a second or so while transmission is in neutral, it allows the engine speed to drop and synchronize engine and transmission revolutions relative to the road speed. Downshifting is performed in a similar fashion, except the engine speed is now required to increase (while transmission is in neutral) just the right amount in order to achieve the synchronization for a smooth, non-collision gear change. "Skip changing" is also widely used; in principle operation is the same as double-clutching, but it requires neutral be held slightly longer than a single gear change. Common North American setups include 9, 10, 13, 15, and 18 speeds. Automatic and semi-automatic transmissions for heavy trucks are becoming more and more common, due to advances both in transmission and engine power. In Europe 8, 10, 12 and 16 gears are common on larger trucks with manual transmission, while automatic or semiautomatic transmissions would have anything from 5 to 12 gears. Almost all heavy truck transmissions are of the "range and split" (double H shift pattern) type, where range change and so-called half gears or splits are air operated and always preselected before the main gear selection. More new trucks in Europe are being sold with automatic or semi-automatic transmissions. This may be due the fuel consumption can be lowered and truck durability improved. The primary reason perhaps is the fact that such transmissions give a driver more time to concentrate on the road and traffic conditions. Frame. A truck frame consists of two parallel boxed (tubular) or C-shaped rails, or beams, held together by crossmembers. These frames are referred to as ladder frames due to their resemblance to a ladder if tipped on end. The rails consist of a tall vertical section (two if boxed) and two shorter horizontal flanges. The height of the vertical section provides opposition to vertical flex when weight is applied to the top of the frame (beam resistance). Though typically flat the whole length on heavy duty trucks, the rails may sometimes be tapered or arched for clearance around the engine or over the axles. The holes in rails are used either for mounting vehicle components and running wires and hoses, or measuring and adjusting the orientation of the rails at the factory or repair shop. Though they may be welded, crossmembers are most often attached to frame rails by bolts or rivets. Crossmembers may be boxed or stamped into a c-shape, but are most commonly boxed on modern vehicles, particularly heavy trucks. The frame is almost always made of steel, but can be made (whole or in part) of aluminum for a lighter weight. A tow bar may be found attached at one or both ends, but heavy trucks almost always make use of a fifth wheel hitch. Environmental effects. Trucks contribute to air, noise, and water pollution similarly to automobiles. Trucks may emit lower air pollution emissions than cars per pound of vehicle mass, although the absolute level per vehicle mile traveled is higher and diesel particulate matter is especially problematic for health. With respect to noise pollution trucks emit considerably higher sound levels at all speeds compared to typical car; this contrast is particularly strong with heavy-duty trucks. There are several aspects of truck operations that contribute to the overall sound that is emitted. Continuous sounds are those from tires rolling on the roadway and the constant hum of their diesel engines at highway speeds. Less frequent noises, but perhaps more noticeable, are things like the repeated sharp whine of a turbocharger on acceleration or the abrupt blare of an exhaust brake when traversing a downgrade. There has been noise regulation put in place to help control where and when the use of engine braking is allowed. Concerns have been raised about the effect of trucking on the environment, particularly as part of the debate on global warming. In the period from 1990 to 2003, carbon dioxide emissions from transportation sources increased by 20%, despite improvements in vehicle fuel efficiency. In 2005, transportation accounted for 27% of U.S. greenhouse gas emission, increasing faster than any other sector. Between 1985 and 2004, in the U.S., energy consumption in freight transportation grew nearly 53%, while the number of ton-miles carried increased only 43%. "Modal shifts account for a nearly a 23% increase in energy consumption over this period. Much of this shift is due to a greater fraction of freight ton-miles being carried via truck and air, as compared to water, rail, and pipelines." According to a 1995 U.S. Government estimate, the energy cost of carrying a ton of freight a distance of one kilometer averages 337 kJ for water, 221 kJ for rail, 2 000 kJ for trucks and nearly 13 000 kJ for air transport. Many environmental organizations favor laws and incentives to encourage the switch from road to rail, especially in Europe. The European Parliament is moving to ensure that charges on heavy-goods vehicles should be based in part on the air and noise pollution they produce and the congestion they cause, according to legislation approved by the Transport Committee The Eurovignette scheme has been proposed whereby new charges would be potentially levied against things such as noise and air pollution and also weight related damages from the lorries themselves Commercial insurance. Primary Liability Insurance coverage protects the truck from damage or injuries to other people as a result of a truck accident. This truck insurance coverage is mandated by U.S. state and federal agencies and proof of coverage is required to be sent to them. Insurance coverage limits range from $35,000 to $1,000,000. Pricing is dependent on region, driving records, and history of the trucking operation. Motor Truck Cargo insurance protects the transporter for his responsibility in the event of damaged or lost freight. The policy is purchased with a maximum load limit per vehicle. Cargo insurance coverage limits can range from $10,000 to $100,000 or more. Pricing for this insurance is mainly dependent on the type of cargo being hauled. Truck shows. In the UK, three truck shows are popular -Shropshire Truck Show in Oswestry Showground during May, The UK Truck Show held in June at Santa Pod Raceway and FIA European Drag Racing Championships from the home of European Drag-Racing. The UK Truck Show features drag-racing with 6-ton trucks from the British Truck Racing Association, plus other diesel-powered entertainment. Truck Shows provide operators with an opportunity to win awards for their trucks. |