ratio of word probabilities predicted from brain for butterfly and screwdriver

close this window

butterfly

screwdriver

top 10 words in brain distribution (in article):
plant species city fruit grow state food house tree leaf
top 10 words in brain distribution (in article):
blade steel head handle tool hammer hand size design shape
top 10 words in brain distribution (not in article):
animal seed store build Unite street town home wild country
top 10 words in brain distribution (not in article):
iron cut hair metal nail whip breast bronze knife sword
times more probable under butterfly 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under screwdriver
(words not in the model)
A butterfly'" is an insect of the order Lepidoptera. Like all Lepidoptera, butterflies are notable for their unusual life cycle with a larval caterpillar stage, an inactive pupal stage, and a spectacular metamorphosis into a familiar and colourful winged adult form. Most species are day-flying so they regularly attract attention. The diverse patterns formed by their brightly coloured wings and their erratic yet graceful flight have made butterfly watching a hobby. Butterflies comprise the "true butterflies" (superfamily Papilionoidea), the "skippers" (superfamily Hesperioidea) and the "moth-butterflies" (superfamily Hedyloidea). Butterflies exhibit polymorphism, mimicry and aposematism. Some migrate over long distances. Some butterflies have evolved symbiotic and parasitic relationships with social insects such as ants. Butterflies are important economically as agents of pollination. In addition, a few species are pests, because they can damage domestic crops and trees in their larval stage. Culturally, butterflies are a popular motif in the visual and literary arts. The four-stage lifecycle. Unlike many insects, butterflies do not experience a nymph period, but instead go through a pupal stage which lies between the larva and the adult stage (the "imago"). Butterflies are termed as holometabolous insects, and go through complete metamorphosis. It is a popular belief that butterflies have very short life spans. However, butterflies in their adult stage can live from a week to nearly a year depending on the species. Many species have long larval life stages while others can remain dormant in their pupal or egg stages and thereby survive winters. Butterflies may have one or more broods per year. The number of generations per year varies from temperate to tropical regions with tropical regions showing a trend towards multivoltinism. Egg. Butterfly eggs consist of a hard-ridged outer layer of shell, called the "chorion". This is lined with a thin coating of wax which prevents the egg from drying out before the larva has had time to fully develop. Each egg contains a number of tiny funnel-shaped openings at one end, called "micropyles"; the purpose of these holes is to allow sperm to enter and fertilize the egg. Butterfly and moth eggs vary greatly in size between species, but they are all either spherical or ovate. Butterfly eggs are fixed to a leaf with a special glue which hardens rapidly. As it hardens it contracts, deforming the shape of the egg. This glue is easily seen surrounding the base of every egg forming a meniscus. The nature of the glue is unknown and is a suitable subject for research. The same glue is produced by a pupa to secure the setae of the cremaster. This glue is so hard that the silk pad, to which the setae are glued, cannot be separated. Eggs are usually laid on plants. Each species of butterfly has its own hostplant range and while some species of butterfly are restricted to just one species of plant, others use a range of plant species, often including members of a common family. The egg stage lasts a few weeks in most butterflies but eggs laid close to winter, especially in temperate regions, go through a "diapause" stage, and the hatching may take place only in spring. Other butterflies may lay their eggs in the spring and have them hatch in the summer. These butterflies are usually northern species (Mourning Cloak, Tortoiseshells) Caterpillars. Butterfly larvae, or caterpillars, consume plant leaves and spend practically all of their time in search of food. Although most caterpillars are herbivorous, a few species such as "Spalgis epius" and "Liphyra brassolis" are entomophagous (insect eating). Some larvae, especially those of the Lycaenidae, form mutual associations with ants. They communicate with the ants using vibrations that are transmitted through the substrate as well as using chemical signals. The ants provide some degree of protection to these larvae and they in turn gather honeydew secretions. Caterpillars mature through a series of stages called instars. Near the end of each instar, the larva undergoes a process called apolysis, in which the cuticle, a mixture of chitin and specialized proteins, is released from the epidermis and the epidermis begins to form a new cuticle beneath. At the end of each instar, the larva moults the old cuticle, and the new cuticle rapidly hardens and pigments. Development of butterfly wing patterns begins by the last larval instar. Butterfly caterpillars have three pairs of true legs from the thoracic segments and up to 6 pairs of prolegs arising from the abdominal segments. These prolegs have rings of tiny hooks called crochets that help them grip the substrate. Some caterpillars have the ability to inflate parts of their head to appear snake-like. Many have false eye-spots to enhance this effect. Some caterpillars have special structures called osmeteria which are everted to produce smelly chemicals. These are used in defense. Host plants often have toxic substances in them and caterpillars are able to sequester these substances and retain them into the adult stage. This helps making them unpalatable to birds and other predators. Such unpalatibility is advertised using bright red, orange, black or white warning colours. The toxic chemicals in plants are often evolved specifically to prevent them from being eaten by insects. Insects in turn develop countermeasures or make use of these toxins for their own survival. This "arms race" has led to the coevolution of insects and their host plants. Wing development. Wings or wing pads are not visible on the outside of the larva, but when larvae are dissected, tiny developing "wing disks" can be found on the second and third thoracic segments, in place of the spiracles that are apparent on abdominal segments. Wing disks develop in association with a trachea that runs along the base of the wing, and are surrounded by a thin "peripodial membrane", which is linked to the outer epidermis of the larva by a tiny duct. Wing disks are very small until the last larval instar, when they increase dramatically in size, are invaded by branching tracheae from the wing base that precede the formation of the wing veins, and begin to develop patterns associated with several landmarks of the wing. Near pupation, the wings are forced outside the epidermis under pressure from the hemolymph, and although they are initially quite flexible and fragile, by the time the pupa breaks free of the larval cuticle they have adhered tightly to the outer cuticle of the pupa (in The screwdriver'" is a device specifically designed to insert and tighten, or to loosen and remove, screws. The screwdriver is made up of a head or tip, which engages with a screw, a mechanism to apply torque by rotating the tip, and some way to position and support the screwdriver. A typical hand screwdriver comprises an approximately cylindrical handle of a size and shape to be held by a human hand, and an axial shaft fixed to the handle, the tip of which is shaped to fit a particular type of screw. The handle and shaft allow the screwdriver to be positioned and supported and, when rotated, to apply torque. Screwdrivers are made in a variety of shapes, and the tip can be rotated manually or by an electric or other motor. A screw has a head with a contour such that an appropriate screwdriver tip can be engaged in it in such a way that the application of sufficient torque to the screwdriver will cause the screw to rotate. History. Gunsmiths still refer to a screwdriver as a "turnscrew", under which name it is an important part of a set of pistols. The name was common in earlier centuries, used by cabinet makers and shipwrights and perhaps other trades. The Cabinet-Maker's screwdriver is one of the longest-established handle forms, somewhat oval or elipsoid in cross section. This is variously attributed to improving grip or preventing the tool rolling off the bench, but there is no reason to suppose these are not rationalisations. The shape has been popular for a couple of hundred years. It is usually associated with a plain head for slotted screws, but has been used with many head forms. "See Also: "The History of Screws Types and variations. There are many types of screw heads, of which the most common are the slotted, Phillips, PoziDriv SupaDriv (crosspoint), Robertson, TORX, and Allen (hex). Screwdrivers come in a large variety of sizes to match those of screws, from tiny jeweler's screwdrivers up. If a screwdriver that is not the right size and type for the screw is used, it is likely that the screw will be damaged in the process of tightening it. This is less important for PoziDriv and SupaDriv, which are designed specifically to be more tolerant of size mismatch. When tightening a screw with force, it is important to press the head hard into the screw, again to avoid damaging the screw. Some manual screwdrivers have a ratchet action whereby the screwdriver blade is locked to the handle for clockwise rotation, but uncoupled for counterclockwise rotation when set for tightening screws; and vice versa for loosening. Many screwdriver designs have a handle with detachable head (the part of the screwdriver which engages with the screw), called "bits" as with drill bits, allowing a set of one handle and several heads to be used for a variety of screw sizes and types. This kind of design has allowed the development of electrically powered screwdrivers, which, as the name suggests, use an electric motor to rotate the bit. In such cases the terminology for power drills is used, e.g. "shank" or "collet". Some drills can also be fitted with screwdriver heads. Manual screw drivers with a spiral ratchet'" mechanism to turn pressure (linear motion) into rotational motion also exist, and predate electric screwdrivers. The user pushes the handle toward the workpiece, causing a pawl in a spiral groove to rotate the shank and the removable bit. The ratchet can be set to rotate left or right with each push, or can be locked so that the tool can be used like a conventional screwdriver. Once very popular, these spiral ratchet drivers, using proprietary bits, have been largely discontinued by manufacturers such as Stanley, although one can still find them at vintage tool auctions. Companies such as Lara Specialty Tools now offer a modernized version that uses standard 1 /4-inch hex shank power tool bits. Since a variety of drill bits are available in this format, it allows the tool to do double duty as a "push drill". Many modern electrical appliances, if they contain screws at all, use screws with heads other than the typical slotted or Phillips styles. TORX is one such pattern that has become very widespread. The main cause of this trend is manufacturing efficiency: TORX and other types are designed so the driver will not slip out of the fastener as will a Phillips driver. (Slotted screws are rarely used in mass-produced devices, since the driver is not inherently centered on the fastener). A benefit disadvantage of non-typical fasteners (depending on your point of view) is that it can be more difficult for users of a device to disassemble it than if more-common head types were used, but TORX and other drivers are widely available. Specialized patterns of security screws are also used, such as the Gamebit head style used in all Nintendo consoles, though drivers for most security heads are, again, readily available. While screwdrivers are designed for the above functions, they are commonly also used as improvised substitutes for pry bars, levers, and hole punches, as well as other tools. There is no such thing as a "left-handed screwdriver", as the device can easily be wielded in either hand. To be sent on an errand to find a left-handed screwdriver is often a test of stupidity, or is used as a metaphor for something useless. The term "Birmingham screwdriver" is used jokingly in the UK to denote a hammer or sledgehammer. The handle and shaft of screwdrivers have changed considerably over time. The design is influenced by both purpose and manufacturing requirements. The "Perfect Handle" screwdriver was first manufactured by HD Smith & Company that operated from 1850 to 1900. Many manufacturers adopted this handle design world wide. The "Flat Bladed" screwdriver was another design composed of drop forged steel with riveted wood handles? Among slotted screwdrivers, there are a couple of major variations at the blade or bit end involving the profile of the blade as viewed face-on. The more common type is sometimes referred to as keystone'", where the blade profile is slightly flared before tapering off at the end. To maximize access in space-restricted applications, the same edges for the "'cabinet'" variety, in contrast, are straight and parallel, meeting the end of the blade at a right angle.