bicycle |
truck |
top 10 words in brain distribution (in article): power station line train water wire form design build air |
top 10 words in brain distribution (in article): vehicle wheel gear car passenger speed drive truck seat transmission |
top 10 words in brain distribution (not in article): cell signal locomotive radio steam electric frequency electrical current sound |
top 10 words in brain distribution (not in article): aircraft design tornado pole wind elevator belt flight safety cyclone |
times more probable under bicycle 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under truck (words not in the model) | |
The bicycle'", "'bike'", or "'cycle'" is a pedal-driven, human-powered vehicle with two wheels attached to a frame, one behind the other. Bicycles were introduced in the 19th century and now number about one billion worldwide. They are the principal means of transportation in many regions. They also provide a popular form of recreation, and have been adapted for such uses as children's toys, adult fitness, military and police applications, courier services, and competitive sports. The basic shape and configuration of a typical bicycle has changed little since the first chain-driven model was developed around 1885. Many details have been improved, especially since the advent of modern materials and computer-aided design. These have allowed for a proliferation of specialized designs for particular types of cycling. The bicycle has had a considerable effect on human society, in both the cultural and industrial realms. In its early years, bicycle construction drew on pre-existing technologies; more recently, bicycle technology has, in turn, contributed both to old and new areas. History. Multiple innovators contributed to the history of the bicycle by developing precursor human-powered vehicles. The documented ancestors of today's modern bicycle were known as push bikes (still called push bikes outside of North America), draisines, or hobby horses. Being the first human means of transport to make use of the two-wheeler principle, the draisine (or "mistmashine", "running machine"), invented by the German Baron Karl von Drais, is regarded as the archetype of the bicycle. It was introduced by Drais to the public in Mannheim in summer 1817 and in Paris in 1818. Its rider sat astride a wooden frame supported by two in-line wheels and pushed the vehicle along with his her feet while steering the front wheel. In the early 1860s, Frenchmen Pierre Michaux and Pierre Lallement took bicycle design in a new direction by adding a mechanical crank drive with pedals on an enlarged front wheel. Another French inventor by the name of Douglas Grasso had a failed prototype of Pierre Lallement's bicycle several years earlier. Several why-not-the-rear-wheel inventions followed, the best known being the rod-driven velocipede by Scotsman Thomas McCall in 1869. The French creation, made of iron and wood, developed into the "penny-farthing" (more formally an "ordinary bicycle", a retronym, since there were then no other kind). It featured a tubular steel frame on which were mounted wire spoked wheels with solid rubber tires. These bicycles were difficult to ride due to their very high seat and poor weight distribution. The "dwarf ordinary" addressed some of these faults by reducing the front wheel diameter and setting the seat further back. This necessitated the addition of gearing, effected in a variety of ways, to attain sufficient speed. Having to both pedal and steer via the front wheel remained a problem. J. K. Starley, J. H. Lawson, and Shergold solved this problem by introducing the chain drive (originated by Henry Lawson's unsuccessful "bicyclette"), connecting the frame-mounted pedals to the rear wheel. These models were known as "dwarf safeties", or "safety bicycles", for their lower seat height and better weight distribution. Starley's 1885 Rover is usually described as the first recognizably modern bicycle. Soon, the "seat tube" was added, creating the double-triangle "diamond frame" of the modern bike. Further innovations increased comfort and ushered in a second bicycle craze, the 1890s' "Golden Age of Bicycles". In 1888, Scotsman John Boyd Dunlop introduced the pneumatic tire, which soon became universal. Soon after, the rear freewheel was developed, enabling the rider to coast. This refinement led to the 1898 invention of coaster brakes. Derailleur gears and hand-operated cable-pull brakes were also developed during these years, but were only slowly adopted by casual riders. By the turn of the century, cycling clubs flourished on both sides of the Atlantic, and touring and racing became widely popular. Bicycles and horse buggies were the two mainstays of private transportation just prior to the automobile, and the grading of smooth roads in the late 19th century was stimulated by the widespread advertising, production, and use of these devices. Uses. Bicycles have been and are employed for many uses: Technical aspects. The bicycle has undergone continual adaptation and improvement since its inception. These innovations have continued with the advent of modern materials and computer-aided design, allowing for a proliferation of specialized bicycle types. Types. Bicycles can be categorized in different ways: e.g. by function, by number of riders, by general construction, by gearing or by means of propulsion. The more common types include utility bicycles, mountain bicycles, racing bicycles, touring bicycles, hybrid bicycles, cruiser bicycles, and BMX bicycles. Less common are tandems, lowriders, tall bikes, fixed gear (fixed-wheel), folding models and recumbents (one of which was used to set the IHPVA Hour record). Unicycles, tricycles and quadracycles are not strictly bicycles, as they have respectively one, three and four wheels, but are often referred to informally as "bikes". Dynamics. A bicycle stays upright while moving forward by being steered so as to keep its center of gravity over the wheels. This steering is usually provided by the rider, but under certain conditions may be provided by the bicycle itself. The combined center of mass of a bicycle and its rider must lean into a turn in order successfully navigate it. This lean is induced by a method known as countersteering, which can be performed by the rider turning the handlebars directly with the hands or indirectly by leaning the bicycle. Short-wheelbase or tall bicycles, when braking, can generate enough stopping force at the front wheel in order to flip longitudinally. The act of purposefully using this force to lift the rear wheel and balance on the front without tipping over is a trick known as a stoppie, endo or front wheelie. Performance. The bicycle is extraordinarily efficient in both biological and mechanical terms. The bicycle is the most efficient self-powered means of transportation in terms of energy a person must expend to travel a given distance. From a mechanical viewpoint, up to 99% of the energy delivered by the rider into the pedals is transmitted to the wheels, although the use of gearing mechanisms may reduce this by 10-15%. In terms of the ratio of cargo weight a bicycle can carry to total weight, it is also a most efficient means of cargo transportation. A human traveling on a bicycle at low to medium speeds of around 10-15 mph (15-25 km h), uses only the energy required to walk, is the most energy-efficient means of transport generally available. Air drag, which is proportional to the square of speed, requires dramatically higher power outputs as speeds increase. If the rider is sitting upright, the rider's body creates about 75% of the total drag of the bicycle rider combination. Drag can be reduced by seating the rider in a supine position or a prone position, thus creating a recumbent bicycle or human powered vehicle. Drag can also be reduced by covering the bicycle with an aerodynamic fairing. In addition, the carbon dioxide generated in the production and transportation of the food required by the bicyclist, per mile traveled, is less than 1 10th that generated by energy efficient cars. Construction and parts. In its early years, bicycle construction drew on pre-existing technologies. More recently, bicycle technology has in turn contributed ideas in both old and new areas. Frame. The great majority of today's bicycles have a frame with upright seating which looks much like the first chain-driven bike. Such upright bicycles almost always feature the "diamond frame", a truss consisting of two triangles: the front triangle and the rear triangle. The front triangle consists of the head tube, top tube, down tube and seat tube. The head tube contains the headset, the set of bearings that allows the fork to turn smoothly for steering and balance. The top tube connects the head tube to the seat tube at the top, and the down tube connects the head tube to the bottom bracket. The rear triangle consists of the seat tube and paired chain stays and seat stays. The chain stays run parallel to the chain, connecting the bottom bracket to the rear dropouts. The seat stays connect the top of the seat tube (at or near the same point as the top tube) to the rear dropouts. Historically, women's bicycle frames had a top tube that connected in the middle of the seat tube instead of the top, resulting in a lower standover height at the expense of compromised structural integrity, since this places a strong bending load in the seat tube, and bicycle frame members are typically weak in bending. This design, referred to as a "step-through frame", allows the rider to mount and dismount in a dignified way while wearing a skirt or dress. While some women's bicycles continue to use this frame style, there is also a variation, the "mixte", which splits the top tube into two small top tubes that bypass the seat tube and connect to the rear dropouts. The ease of stepping through is also appreciated by those with limited flexibility or other joint problems. Because of its persistent image as a "women's" bicycle, step-through frames are not common for larger frames. Another style is the recumbent bicycle. These are inherently more aerodynamic than upright versions, as the rider may lean back onto a support and operate pedals that are on about the same level as the seat. The world's fastest bicycle is a recumbent bicycle but this type was banned from competition in 1934 by the Union Cycliste Internationale. Historically, materials used in bicycles have followed a similar pattern as in aircraft, the goal being high strength and low weight. Since the late 1930s alloy steels have been used for frame and fork tubes in higher quality machines. Celluloid found application in mudguards, and aluminum alloys are increasingly used in components such as handlebars, seat post, and brake levers. In the 1980s aluminum alloy frames became popular, and their affordability now makes them common. More expensive carbon fiber and titanium frames are now also available, as well as advanced steel alloys and even bamboo. Drivetrain and gearing. Since cyclists' legs are most efficient over a narrow range of pedaling speeds (cadence), a variable gear ratio helps a cyclist to maintain an optimum pedalling speed while covering varied terrain. As a first approximation, utility bicycles often use a hub gear with a small number (3 to 5) of widely-spaced gears, road bicycles and racing bicycles use derailleur gears with a moderate number (10 to 22) of closely-spaced gears, while mountain bicycles, hybrid bicycles, and touring bicycles use dérailleur gears with a larger number (15 to 30) of moderately-spaced gears, often including an extremely low gear (granny gear) for climbing steep hills. Different gears and ranges of gears are appropriate for different people and styles of cycling. Multi-speed bicycles allow gear selection to suit the circumstances, e.g. it may be comfortable to use a high gear when cycling downhill, a medium gear when cycling on a flat road, and a low gear when cycling uphill. In a lower gear every turn of the pedals leads to fewer rotations of the rear wheel. This allows the energy required to move the same distance to be distributed over more pedal turns, reducing fatigue when riding uphill, with a heavy load, or against strong winds. A higher gear allows a cyclist to make fewer pedal cycles to maintain a given speed, but with more effort per turn of the pedals. The "drivetrain" begins with pedals which rotate the cranks, which are held in axis by the bottom bracket. Most bicycles use a chain to transmit power to the rear wheel. A relatively small number of bicycles use a shaft drive to transmit power. A very small number of bicycles (mainly single-speed bicycles intended for short-distance commuting) use a belt drive as an oil-free way of transmitting power. With a "chain drive" transmission, a "chainring" attached to a crank drives the chain, which in turn rotates the rear wheel via the rear sprocket(s) (cassette or freewheel). There are four gearing options: two-speed hub gear integrated with chain ring, up to 3 chain rings, up to 11 sprockets, hub gear built in to rear wheel (3-speed to 14-speed). The most common options are either a rear hub or multiple chain rings combined with multiple sprockets (other combinations of options are possible but less common). With a "shaft drive" transmission, a gear set at the bottom bracket turns the shaft, which then turns the rear wheel via a gear set connected to the wheel's hub. There is some small loss of efficiency due to the two gear sets needed. The only | A truck'" is a type of motor vehicle commonly used for carrying goods and materials. Some light trucks are relatively small, similar in size to a passenger automobile. Commercial transportation or fire trucks can be quite large and can also serve as a platform for specialized equipment. Etymology. The word "truck" possibly derives from the Greek "trochos" (τροχός =wheel). In North America, certain kinds of big wheels were called "trucks". When the gasoline-engine driven trucks came into fashion, these were called "motor trucks." International variance. In the United States and Canada "truck" is usually reserved for commercial vehicles larger than normal cars, and for pickups and other vehicles having an open load bed. In the United Kingdom and the Republic of Ireland, "lorry" is used as well as "truck", but only used for the medium and heavy types (see below); "i.e." a van, a pickup or an off-road four-wheel drive vehicle such as a Jeep would never be regarded as a lorry in these countries, unlike in the United States (it should be noted, however, that the term lorry is not used in the United States). The same applies to the initials "HGV" (for Heavy Goods Vehicle) which is basically synonymous with "lorry". The word "truck" is also accepted in these countries, and can apply to large vans as well as to lorries ("i.e." its scope is slightly wider). In the UK vernacular, "wagon" is still commonly used to describe various larger vehicles. Though the US term station wagon is occasionally used in the UK, it can cause confusion (despite retaining the US definition), so the societal term estate car remains widely popular. "Lorry" is also used in Hong Kong. In South Africa, the word "kombi" is used, based on its Afrikaans equivalent. The word "lorry" is also used in Cambodia, although here it can refer to a train. In Australia and New Zealand, a pickup truck (a relatively small, usually car- or van-derived vehicle, with an open back body) is called a ute'" (short for "utility") and the word "truck" or "lorry" is reserved for larger vehicles. Other languages have loanwords based on these terms, such as the Malay language and the Spanish language in northern Mexico. A commonly understood term for truck across many European countries is "'camion'". Camion is also used in Quebec to identify trucks in French. Additionally, from the German language the initials "PKW" ("'P'"ersonen"'K'"raft"'W'"agen or passenger carrying vehicle) for a car van or small truck) and "LKW" ("'L'"ast"'K'"raft"'W'"agen or cargo load freight carrying vehicle) for larger trucks are understood. In U.S. English the word "truck" is used in the names of particular types of truck, such as a "fire truck" or "tanker truck". Note that in British English these would be a "fire engine" and "tanker" respectively. Driving. In the United States a commercial driver's license is required to drive any type of vehicle weighing 26,001 lbs (11,800 kg) or more. In the United Kingdom there are complex rules; as an overview, to drive a vehicle weighing more than 7,500 kg for commercial purposes requires a specialist license (the type varies depending on the use of the vehicle and number of seats). For licenses first acquired after 1997, that weight was reduced to 3,500 kg, not including trailers. In the Australia a truck driving license is required for any motor vehicle with a GVM exceeding 4500 kg. The motor vehicles classes are further expanded as "'LR/MR'" (Light Medium rigid up to 8000 kg GVM + trailer to maximum GCM 8000 kg), "'HR'" (Heavy Rigid +trailer up to GCM 9000 kg), "'HC'" (Heavy Combination, a typical prime mover +semi trailer combination) and the "'MC'" (Multi Combination e.g B Doubles Road trains). There is also a heavy vehicle transmission condition for a licence class HR, HC or MC in a vehicle fitted with an automatic or synchromesh transmission, driver’s licence will restrict to vehicles of that class fitted with a synchromesh or automatic transmission. To have the condition removed, a person needs to pass a practical driving test in a vehicle with non synchromesh transmission (constant mesh or crash box). Engine. The oldest truck was built in 1896 by Gottlieb Daimler. Small trucks such as SUVs or pickups, and even light medium-duty trucks in North America and Russia will use gasoline engines. Most heavier trucks use four stroke turbo intercooler diesel engines. Huge off-highway trucks use locomotive-type engines such as a V12 Detroit Diesel two stroke engine. North American manufactured highway trucks almost always use an engine built by a third party, such as CAT, Cummins, or Detroit Diesel. The only exceptions to this are Volvo and its subsidiary Mack Trucks, which are available with their own engines. Freightliner Trucks, Sterling Trucks and Western Star, subsidiaries of Daimler AG, are available with Mercedes-Benz and Detroit Diesel engines. Trucks and buses built by Navistar International usually also contain International engines. The Swedish manufacturer Scania claims they stay away from the U.S. market because of this third party tradition. In the European Union all new truck engines must comply with Euro 5 regulations. Drivetrain. Small trucks use the same type of transmissions as almost all cars, having either an automatic transmission or a manual transmission with synchronisers. Bigger trucks often use manual transmissions without synchronisers, saving bulk and weight, although synchromesh transmissions are used in larger trucks as well. Transmissions without synchronizers, known as "crash boxes", require double-clutching for each shift, (which can lead to repetitive motion injuries), or a technique known colloquially as "floating," a method of changing gears which doesn't use the clutch, except for starts and stops, due to the physical effort of double clutching, especially with non power assisted clutches, faster shifts, and less clutch wear. Double-clutching allows the driver to control the engine and transmission revolutions to synchronize, so that a smooth shift can be made, "e.g.," when upshifting, the accelerator pedal is released and the clutch pedal is depressed while the gear lever is moved into neutral, the clutch pedal is then released and quickly pushed down again while the gear lever is moved to the next highest gear. Finally, the clutch pedal is released and the accelerator pedal pushed down to obtain required engine speed. Although this is a relatively fast movement, perhaps a second or so while transmission is in neutral, it allows the engine speed to drop and synchronize engine and transmission revolutions relative to the road speed. Downshifting is performed in a similar fashion, except the engine speed is now required to increase (while transmission is in neutral) just the right amount in order to achieve the synchronization for a smooth, non-collision gear change. "Skip changing" is also widely used; in principle operation is the same as double-clutching, but it requires neutral be held slightly longer than a single gear change. Common North American setups include 9, 10, 13, 15, and 18 speeds. Automatic and semi-automatic transmissions for heavy trucks are becoming more and more common, due to advances both in transmission and engine power. In Europe 8, 10, 12 and 16 gears are common on larger trucks with manual transmission, while automatic or semiautomatic transmissions would have anything from 5 to 12 gears. Almost all heavy truck transmissions are of the "range and split" (double H shift pattern) type, where range change and so-called half gears or splits are air operated and always preselected before the main gear selection. More new trucks in Europe are being sold with automatic or semi-automatic transmissions. This may be due the fuel consumption can be lowered and truck durability improved. The primary reason perhaps is the fact that such transmissions give a driver more time to concentrate on the road and traffic conditions. Frame. A truck frame consists of two parallel boxed (tubular) or C-shaped rails, or beams, held together by crossmembers. These frames are referred to as ladder frames due to their resemblance to a ladder if tipped on end. The rails consist of a tall vertical section (two if boxed) and two shorter horizontal flanges. The height of the vertical section provides opposition to vertical flex when weight is applied to the top of the frame (beam resistance). Though typically flat the whole length on heavy duty trucks, the rails may sometimes be tapered or arched for clearance around the engine or over the axles. The holes in rails are used either for mounting vehicle components and running wires and hoses, or measuring and adjusting the orientation of the rails at the factory or repair shop. Though they may be welded, crossmembers are most often attached to frame rails by bolts or rivets. Crossmembers may be boxed or stamped into a c-shape, but are most commonly boxed on modern vehicles, particularly heavy trucks. The frame is almost always made of steel, but can be made (whole or in part) of aluminum for a lighter weight. A tow bar may be found attached at one or both ends, but heavy trucks almost always make use of a fifth wheel hitch. Environmental effects. Trucks contribute to air, noise, and water pollution similarly to automobiles. Trucks may emit lower air pollution emissions than cars per pound of vehicle mass, although the absolute level per vehicle mile traveled is higher and diesel particulate matter is especially problematic for health. With respect to noise pollution trucks emit considerably higher sound levels at all speeds compared to typical car; this contrast is particularly strong with heavy-duty trucks. There are several aspects of truck operations that contribute to the overall sound that is emitted. Continuous sounds are those from tires rolling on the roadway and the constant hum of their diesel engines at highway speeds. Less frequent noises, but perhaps more noticeable, are things like the repeated sharp whine of a turbocharger on acceleration or the abrupt blare of an exhaust brake when traversing a downgrade. There has been noise regulation put in place to help control where and when the use of engine braking is allowed. Concerns have been raised about the effect of trucking on the environment, particularly as part of the debate on global warming. In the period from 1990 to 2003, carbon dioxide emissions from transportation sources increased by 20%, despite improvements in vehicle fuel efficiency. In 2005, transportation accounted for 27% of U.S. greenhouse gas emission, increasing faster than any other sector. Between 1985 and 2004, in the U.S., energy consumption in freight transportation grew nearly 53%, while the number of ton-miles carried increased only 43%. "Modal shifts account for a nearly a 23% increase in energy consumption over this period. Much of this shift is due to a greater fraction of freight ton-miles being carried via truck and air, as compared to water, rail, and pipelines." According to a 1995 U.S. Government estimate, the energy cost of carrying a ton of freight a distance of one kilometer averages 337 kJ for water, 221 kJ for rail, 2 000 kJ for trucks and nearly 13 000 kJ for air transport. Many environmental organizations favor laws and incentives to encourage the switch from road to rail, especially in Europe. The European Parliament is moving to ensure that charges on heavy-goods vehicles should be based in part on the air and noise pollution they produce and the congestion they cause, according to legislation approved by the Transport Committee The Eurovignette scheme has been proposed whereby new charges would be potentially levied against things such as noise and air pollution and also weight related damages from the lorries themselves Commercial insurance. Primary Liability Insurance coverage protects the truck from damage or injuries to other people as a result of a truck accident. This truck insurance coverage is mandated by U.S. state and federal agencies and proof of coverage is required to be sent to them. Insurance coverage limits range from $35,000 to $1,000,000. Pricing is dependent on region, driving records, and history of the trucking operation. Motor Truck Cargo insurance protects the transporter for his responsibility in the event of damaged or lost freight. The policy is purchased with a maximum load limit per vehicle. Cargo insurance coverage limits can range from $10,000 to $100,000 or more. Pricing for this insurance is mainly dependent on the type of cargo being hauled. Truck shows. In the UK, three truck shows are popular -Shropshire Truck Show in Oswestry Showground during May, The UK Truck Show held in June at Santa Pod Raceway and FIA European Drag Racing Championships from the home of European Drag-Racing. The UK Truck Show features drag-racing with 6-ton trucks from the British Truck Racing Association, plus other diesel-powered entertainment. Truck Shows provide operators with an opportunity to win awards for their trucks. |