beetle |
chisel |
top 10 words in brain distribution (in article): species bird egg plant insect food female form family live |
top 10 words in brain distribution (in article): type design form allow term time common require hold material |
top 10 words in brain distribution (not in article): fish ant produce bee fruit nest time snake grow shark |
top 10 words in brain distribution (not in article): wear horse woman clothe century saddle key lock dress fashion |
times more probable under beetle 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chisel (words not in the model) | |
Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes — some longhorn beetles (family Cerambycidae) and weevils — while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families — Dytiscidae, Haliplidae, many species of Hydrophilidae and others — the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in | A chisel'" is a tool with a characteristically shaped cutting edge (such that wood chisels have lent part of their name to a particular grind) of blade on its end, for carving or cutting a hard material such as wood, stone, or metal. The handle and blade of some types of chisel are made of metal or wood with a sharp edge in it. In use, the chisel is forced into the material to cut the material. The driving force may be manually applied or applied using a mallet or hammer. In industrial use, a hydraulic ram or falling weight ('trip hammer') drives the chisel into the material to be cut. A "gouge", one type of chisel, is used, particularly in woodworking, woodturning and sculpture, to carve small pieces from the material. Gouges are most often used in creating concave surfaces. A gouge typically has a 'U'-shaped cross-section. Types of Chisels. Chisels have a wide variety of uses. Many types of chisels have been devised, each specially suited to its intended use. Different types of chisels may be constructed quite differently, in terms of blade width or length, as well as shape and hardness of blade. They may have wooden handles attached or may be made entirely of one piece of metal. Woodworking chisels. Woodworking chisels range from quite small hand tools for tiny details, to large chisels used remove big sections of wood, in 'roughing out' the shape of a pattern or design. Typically, in woodcarving, one starts with a larger tool, and gradually progresses to smaller tools to finish the detail. One of the largest types of chisel is the slick, used in timber frame construction and wooden shipbuilding. According to their function there are many names given to woodworking chisels, such as: Japanese woodworking chisels. The better quality Japanese wood chisels are made from laminated steel. There are different types of metals used in each chisel. The better ones are laminated by hand, over a charcoal fire. The combination of the metals makes a chisel that takes a very sharp edge, and is hard enough to maintain the edge for a long time. This technique produces a tools that have a harder edge, usually a hardness rating of Rockwell 64, compared to their western counterparts of around 62 on the Rockwell scale. There are two basic metals used in these chisels, white steel and blue steel. The names come from the color of the paper the steels are wrapped in. White and blue steel come in vary grades, that vary in carbon content. Both have low levels of impurities. White steel is a simple carbon steel. Blue steel contains alloying elements, and sacrifices some sharpness for edge retention, toughness, and corrosion resistance, although it is not stainless. Many makers are descendants of the samurai sword makers, once highly respected members of their country, until these swords were outlawed. The chisel makers often turned their attention to chisel and plane makers. Expensive sets have a decorative wood grain look to them which is actually the thin layers of steel being hammered together. The neck of the chisel can be twisted to add to the decorative look of the tool. The handles are often made from an exotic hardwood, such as ebony. The sets usually come in a wooden box, signed by the maker. Japanese chisels have hollows in the back side, the wider ones having as many as four hollows. These are intended to help in the flattening of the back of the chisels, which is the first step in sharpening a chisel. Once the back side is perfectly flat, and polished to the required degree, the front and side edges need to be addressed. A general rule is any chisel with a hoop, or metal ring at the end of the handle, is it's designed to be struck with mallet. If it does not have a hoop, it is a paring tool, designed not to be struck with another tool. Lathe tools. A lathe tool is a woodworking chisel designed to cut wood as it is spun on a lathe. These tools have longer handles for more leverage, needed to counteract the tendency of the tool to react to the downward force of the spinning wood being cut or carved. In addition, the angle and method of sharpening is different, a secondary bevel would not be ground on the tool. Woodworking chisels range from quite small hand tools for tiny details, to large chisels used remove big sections of wood, in 'roughing out' the shape of a pattern or design. Typically, in woodcarving, one starts with a larger tool, and gradually progresses to smaller tools to finish the detail. One of the largest types of chisel is the slick, used in timber frame construction and wooden shipbuilding. Metalworking chisels. Chisels used in metal work can be divided into two main categories, "hot" chisels, and "cold" chisels. A hot chisel is used to cut metal that has been heated in a forge to soften the metal. Cold chisel. A cold chisel'" is a tool made of tempered steel used for cutting 'cold' metals, meaning that they are not used in conjunction with heating torches, forges, etc. Cold chisels are used to remove waste metal when a very smooth finish is not required or when the work cannot be done easily with other tools, such as a hacksaw, file, bench shears or power tools. The name cold chisel comes from its use by blacksmiths to cut metal while it was cold as compared to other tools they used to cut hot metal. This tool is also commonly referred to by the misnomer 'coal chisel'. Because cold chisels are used to form metal, they have a less-acute angle to the sharp portion of the blade than a woodworking chisel. This gives the cutting edge greater strength at the expense of sharpness. Cold chisels come in a variety of sizes, from fine engraving tools that are tapped with very light hammers, to massive tools that are driven with sledgehammers. Cold chisels are forged to shape and hardened and tempered (to a brown colour) at the cutting edge. The head of the chisel is chamfered to slow down the formation of the mushroom shape caused by hammering and is left soft to withstand hammer blows. The are four common types of cold chisel. These are the flat chisel, the most widely known type, which is used to cut bars and rods to reduce surfaces and to cut sheet metal which is too thick or difficult to cut with snips. The cross cut chisel is used for cutting grooves and slots. The blade narrows behind the cutting edge to provide clearance. The round nose chisel is used for cutting semi-circular grooves for oil ways in bearings. The diamond point chisel is used for cleaning out corners or difficult places and pulling over centre punch marks wrongly placed for drilling. Although the vast majority of cold chisels are made of steel, a few are manufactured from beryllium copper, for use in special situations where non-sparking tools are required. Hardy chisel. A toothed stone chisel, used by stone sculptors and stonemasons A "'hardy chisel'" is a type of hot chisel with a square shank, which is held in place with the cutting edge facing upwards by placing it in an anvil's Hardy hole. The hot workpiece cut is then placed over the hardy, and struck with a hammer. The hammer drives the chisel into the hot metal, allowing it to be snapped off with a pair of tongs. Stone chisels. Stone chisels are used to carve or cut stone, bricks or concrete slabs. To cut, as opposed to carve, a brick bolster is used; this has a wide, flat blade that is tapped along the cut line to produce a groove, then hit hard in the centre to crack the stone. Sculptors use a "spoon chisel", which is bent, with the bezel (cutting edge) on both sides. To increase the force, stone chisels are often hit with club hammers, a heavier type of hammer. Masonry chisels. Masonry chisels are typically heavy, with a relatively dull head that wedges and breaks, rather than cuts. Normally used as a demolition tool, they may be mounted on a hammer drill, jack hammer, or hammered manually, usually with a heavy hammer of three pounds or more. Plugging chisel. A Plugging chisel has a tapered edge for cleaning out hardened mortar. The chisel is held with one hand and struck with a hammer. The direction of the taper in the blade determines if the chisel cuts deep or runs shallow along the joint. |