beetle |
bell |
top 10 words in brain distribution (in article): species bird egg plant insect food female form family live |
top 10 words in brain distribution (in article): produce wine contain state common time world type process century |
top 10 words in brain distribution (not in article): fish produce ant bee fruit nest grow time snake shark |
top 10 words in brain distribution (not in article): light plant drink fruit lamp water beer seed grow sugar |
times more probable under beetle 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under bell (words not in the model) | |
Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes — some longhorn beetles (family Cerambycidae) and weevils — while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families — Dytiscidae, Haliplidae, many species of Hydrophilidae and others — the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this | A bell'" is a simple sound-making device. The bell is a percussion instrument and an idiophone. Its form is usually an open-ended hollow drum which resonates upon being struck. The striking implement can be a tongue suspended within the bell, known as a "clapper", a small, free sphere enclosed within the body of the bell, or a separate mallet. Bells are usually made of cast metal, but small bells can also be made from ceramic or glass. Bells can be of all sizes: from tiny dress accessories to church bells weighing many tons. Church and temple bells. In the Western world, its most classical form is a church bell or town bell, which is hung within a tower and sounded by having the entire bell swung by ropes, whereupon an internal hinged clapper strikes the body of the bell (called a free-swinging bell). A set of bells, hung in a circle for change ringing, is known as a ring of bells. In the Eastern world, the traditional forms of bells are temple and palace bells, small ones being rung by a sharp rap with a stick, and very large ones rung by a blow from the outside by a large swinging beam. The striking technique is employed worldwide for some of the largest tower-borne bells, because swinging the bells themselves could damage their towers. In the Roman Catholic Church and among some High Lutherans and Anglicans, small hand-held bells, called Sanctus or sacring bells, are often rung by a server at Mass when the priest holds high up first the host, and then the chalice immediately after he has said the words of consecration over them (the moment known as the Elevation). This serves to indicate to the congregation that the bread and wine have just been transformed into the body and blood of Christ (see transubstantiation), or, in the alternative Reformation teaching, that Christ is now bodily present in the elements, and that what the priest is holding up for them to look at is Christ himself (see consubstantiation). Japanese religious bells. Japanese Shintoist and Buddhist bells are used in religious ceremonies. "Suzu", a homophone meaning both "cool and refreshing," are spherical bells which contain metal pellets that produce sound from the inside. The hemispherical bell is the "Kane" bell, which is struck on the outside. See also Kane (musical instrument). Buddhist bells. Buddhist bells are used in religious ceremonies. Bell construed as a cause for war. On January 15, 1602 ("Keichō 7"), a fire broke out at Hōkō-ji, Buddhist temple complex in Kyoto. The great image of the Buddha and the structure housing the statue, the "Daibutsu-den", were both consumed by the flames. In 1610, Toyotomi Hideyori decided to sponsor rebuilding the Hōkō-ji and he also decided to order a great bell cast in bronze. On August 24, 1614 ("Keichō 19"), the huge new bronze bell was cast successfully. Dedication ceremonies were scheduled, but at the last minute, Tokugawa Ieyasu forbade the ceremonies to take place because he construed inscriptions on the bell to have been a personal affront: This contrived dispute led to the, which was a series of battles between armies of the Tokugawa shogunate and the samurai of the Toyotomi clan. The siege lasted through 1615. It is conventionally divided into two stages: the Winter Campaign and the Summer Campaign. In the end, the total destruction of the Toyotomi eliminated the last major opposition to the shogunate which would come to dominate Japan for the next 250 years. Bellmaking. The process of casting bells is called bellmaking or bellfounding, and in Europe dates to the 4th or 5th century. The traditional metal for these bells is a bronze of about 23% tin. Known as "bell metal", this alloy is also the traditional alloy for the finest Turkish and Chinese cymbals. Other materials sometimes used for large bells include brass and iron. Bells are always cast mouth down. Bells are made to exact formulas, so that given the diameter it is possible to calculate every dimension, and its musical note, or tone. The frequency of a bell's note in Hz varies with the square of its thickness, and inversely with its diameter. Much experimentation has been devoted to determining the exact shape that will give the best tone. The thickness of a church bell at its thickest part, called the 'sound bow' is usually one thirteenth its diameter. If the bell is mounted as cast, it is called a "maiden bell" while "tuned bells" are worked after casting to produce a precise note. Bell towers. Bells are also associated with clocks, indicating the hour by ringing. Indeed, the word "clock" comes from the Latin word "cloca", meaning bell. Clock towers or bell towers can be heard over long distances which was especially important in the time when clocks were too expensive for widespread use. In the case of clock towers and grandfather clocks, a particular sequence of tones may be played to represent the hour. One common pattern is called the "Westminster Quarters," a sixteen-note pattern named after the Palace of Westminster which popularized it as the measure used by "Big Ben". Bells as musical instruments. Some bells are used as musical instruments, such as carillons, (clock) chimes, or ensembles of bell-players, called bell choirs, using hand-held bells of varying tones. A "ring of bells" is a set of 4 to twelve bells or more used in change ringing, a particular method of ringing bells in patterns. A peal in changing ringing may have bells playing for several hours, playing 5,000 or more patterns without a break or repetition.. Ancient Chinese bells. The ancient Chinese bronze chime bells called bianzhong or (鐘) are among the highest achievements of Chinese bronze casting technology. These chime bells were used as polyphonic musical instruments and some of these bells have been dated at between 2000 to 3600 years old. The secret of the design and the method of casting zhong bells, which was known only to the Chinese in antiquity, was lost in later generations. It was not fully rediscovered and understood until 1978, when a complete ceremonial set of 65 "zhong" bells was found in a near-perfect state of preservation during the excavation of the of Marquis Yi, who died ca. 430BCE. Yi was ruler of Zeng, one of the Warring States which at the time of his death was under control of the Chǔ state. This region is now part of the present-day Hubei province. Although tuned bells have been created and used for musical performance in many cultures, zhong are unique among all other types of cast bells in several respects. They have a lens-shaped (rather than circular) section and the bell mouth has a distinctive "cutaway" profile, and this special shape gives zhong bells the remarkable ability to produce, depending on where they are struck. The interval between these notes on each bell is either a major or minor third, equivalent to a distance of four or five notes on a piano.. The bells of Marquis Yi, which are still fully playable after almost 2500 years, cover a range of slightly less than five octaves but thanks to their twin-tone capability, the set can sound a complete 12-tone scale, predating the development of the European 12-tone system by some 2000 years, and can play melodies in diatonic and pentatonic scales These bells usually have inscriptions on them from which scholars used as references for studying ancient Chinese writings (also known as Bronzeware script). Another related ancient Chinese musical instrument is called qing (pinyin qing4) but it was made of stone instead of metal. Konguro'o. Konguro'o is a small bell, which as well as Djalaajyn firstly had the utilitarian purposes and only after artistic ones. Konguro'o sounded by the time of moving to the new places, being fastened to the horse harness it created very specific "smart" sound background. Konguro'o also hanged on the neck of leader goat, which leads the flock of sheep in some definite direction. That is why in folk memory almost magic sound of konguro'o was associated with nomadic mode of life. To make this instrument Kyrgyz foremen used cooper, bronze, iron and brass. They also decorated it with artistic carving and covered with silver. Sizes of the instruments might vary in considerable limits, what depended on its function. Every bell had its own timbre. Chimes. A variant on the bell is the tubular bell. Several of these metal tubes which are struck manually with hammers, form an instrument named "tubular bells" or "chimes". In the case of wind or aeolian chimes, the tubes are blown against one another by the wind. Farm bells. Whereas the church and temple bells called to mass or religious service, bells were used on farms for more secular signaling. The greater farms in Scandinavia usually had a small bell-tower resting on the top of the barn. The bell was used to call the workers from the field at the end of the day's work. In folk tradition, it is recorded that each church and possibly several farms had their specific rhymes connected to the sound of the specific bells. An example is the Pete Seeger song "The Bells of Rhymney". |