ratio of word probabilities predicted from brain for arm and hammer

close this window

arm

hammer

top 10 words in brain distribution (in article):
muscle human bone animal structure nerve handle contain branch join
top 10 words in brain distribution (in article):
steel head cut handle tool nail design hammer size hand
top 10 words in brain distribution (not in article):
cell body form brain iron tissue organism blade head type
top 10 words in brain distribution (not in article):
iron blade hair metal whip breast bronze knife sword century
times more probable under arm 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under hammer
(words not in the model)
In anatomy, an arm'" is one of the upper limbs of an animal. The term "arm" can also be used for analogous structures, such as one of the paired upper limbs of a four-legged animal, or the arms of cephalopods. In the lexicon of human anatomy, the term "arm" refers specifically to the segment between the shoulder and the elbow. The segment between the elbow and wrist is the forearm. However, in colloquial speech the term "arm" often refers to the entire upper limb from shoulder to wrist. In primates the arms are richly adapted for both climbing and for more skilled, manipulative tasks. The ball and socket shoulder joint allows for movement of the arms in a wide circular plane, while the presence of two forearm bones which can rotate around each other allows for additional range of motion at this level. Anatomy of the human arm. The human arm contains 30 bones, joints, muscles, nerves, and blood vessels. Many of these muscles are used for everyday tasks. Bony structure and joints. The humerus is the (upper) arm bone. It joins with the scapula above at the shoulder joint (or glenohumeral joint) and with the ulna and radius below at the elbow joint. Elbow joint. The elbow joint is the hinge joint between the distal end of the humerus and the proximal ends of the radius and ulna. The humerus cannot be broken easily. Its strength allows it to handle loading up to 300lbs. Osteofascial compartments. The arm is divided by a fascial layer (known as lateral and medial intermuscular septa) separating the muscles into two "osteofascial compartments": The fascia merges with the periosteum (outer bone layer) of the humerus. The compartments contain muscles which are innervated by the same nerve and perform the same action. Two other muscles are considered to be partially in the arm: Cubital fossa. The cubital fossa is clinically important for venepuncture and for blood pressure measurement. It is an imaginary triangle with borders being: The structures which pass through the cubital fossa are vital. The order from which they pass into the forearm are as follows, from medial to lateral: Nerve supply. The musculocutaneous nerve, from C5, C6, C7, is the main supplier of muscles of the anterior compartment. It originates from the lateral cord of the brachial plexus of nerves. It pierces the coracobrachialis muscle and gives off branches to the muscle, as well as to brachialis and biceps brachii. It terminates as the anterior cutaneous nerve of the forearm. The radial nerve, which is from the fifth cervical spinal nerve to the first thoracic spinal nerve, originates as the continuation of the posterior cord of the brachial plexus. This nerve enters the lower triangular space (an imaginary space bounded by, amongst others, the shaft of the humerus and the triceps brachii) of the arm and lies deep to the triceps brachii. Here it travels with a deep artery of the arm (the profunda brachii), which sits in the radial groove of the humerus. This fact is very important clinically as a fracture of the bone at the shaft of the bone here can cause lesions or even transections in the nerve. Other nerves passing through give no supply to the arm. These include: Arteries. The main artery in the arm is the brachial artery. This artery is a continuation of the axillary artery. The point at which the axillary becomes the brachial is distal to the lower border of teres major. The brachial artery gives off an important branch, the profunda brachii (deep artery of the arm). This branching occurs just below the lower border of teres major. The brachial artery continues to the cubital fossa in the anterior compartment of the arm. It travels in a plane between the biceps and triceps muscles, the same as the median nerve and basilic vein. It is accompanied by venae comitantes (accompanying veins). It gives branches to the muscles of the anterior compartment. The artery is in between the median nerve and the tendon of the biceps muscle in the cubital fossa. It then continues into the forearm. The profunda brachii travels through the lower triangular space with the radial nerve. From here onwards it has an intimate relationship with the radial nerve. They are both found deep to the triceps muscle and are located on the spiral groove of the humerus. Therefore fracture of the bone may not only lead to lesion of the radial nerve, but also haematoma of the internal structures of the arm. The artery then continues on to anastamose with the recurrent radial branch of the brachial artery, providing a diffuse blood supply for the elbow joint. Veins. The veins of the arm carry blood from the extremities of the limb, as well as drain the arm itself. The two main veins are the basilic and the cephalic veins. There is a connecting vein between the two, the median cubital vein, which passes through the cubital fossa and is clinically important for venepuncture (withdrawing blood). The basilic vein travels on the medial side of the arm and terminates at the level of the seventh rib. The cephalic vein travels on the lateral side of the arm and terminates as the axillary vein. It passes through the deltopectoral triangle, a space between the deltoid and the pectoralis major muscles. Fractures. Clavicle · Humerus · Monteggia · Galeazzi · Colles' · Smith's · Barton's · Scaphoid · Rolando · Bennett's · Boxer's. Distal Radius · Scapular A hammer'" is a tool meant to deliver an impact to an object. The most common uses are for driving nails, fitting parts, and breaking up objects. Hammers are often designed for a specific purpose, and vary widely in their shape and structure. Usual features are a handle and a head, with most of the weight in the head. The basic design is hand-operated, but there are also many mechanically operated models for heavier uses. The hammer is a basic tool of many professions, and can also be used as a weapon. By analogy, the name "'hammer'" has also been used for devices that are designed to deliver blows, e.g. in the caplock mechanism of firearms. History. The use of simple tools dates to about 2,400,000 BCE when various shaped stones were used to strike wood, bone, or other stones to break them apart and shape them. Stones attached to sticks with strips of leather or animal sinew were being used as hammers by about 30,000 BCE during the middle of the Paleolithic Stone Age. Its archeological record means it is perhaps the oldest human tool known. Designs and variations. The essential part of a hammer is the head, a compact solid mass that is able to deliver the blow to the intended target without itself deforming. The opposite side of a ball as in the ball-peen hammer and the cow hammer. Some upholstery hammers have a magnetized appendage, to pick up tacks. In the hatchet the hammer head is secondary to the cutting edge of the tool. In recent years the handles have been made of durable plastic or rubber. The hammer varies at the top, some are larger than others giving a larger surface area to hit different sized nails and such, Mechanically-powered hammers often look quite different from the hand tools, but nevertheless most of them work on the same principle. They include: In professional framing carpentry, the hammer has almost been completely replaced by the nail gun. In professional upholstery, its chief competitor is the staple gun. Hammer as a force amplifier. A hammer is basically a force amplifier that works by converting mechanical work into kinetic energy and back. In the swing that precedes each blow, a certain amount of kinetic energy gets stored in the hammer's head, equal to the length "D" of the swing times the force "f" produced by the muscles of the arm and by gravity. When the hammer strikes, the head gets stopped by an opposite force coming from the target; which is equal and opposite to the force applied by the head to the target. If the target is a hard and heavy object, or if it is resting on some sort of anvil, the head can travel only a very short distance "d" before stopping. Since the stopping force "F" times that distance must be equal to the head's kinetic energy, it follows that "F" will be much greater than the original driving force "f" roughly, by a factor "D" "d". In this way, great strength is not needed to produce a force strong enough to bend steel, or crack the hardest stone. Effect of the head's mass. The amount of energy delivered to the target by the hammer-blow is equivalent to one half the mass of the head times the square of the head's speed at the time of impact ([Formula 1]). While the energy delivered to the target increases linearly with mass, it increases geometrically with the speed (see the effect of the handle, below). High tech titanium heads are lighter and allow for longer handles, thus increasing velocity and delivering more energy with less arm fatigue than that of a steel head hammer of the same weight. As hammers must be used in many circumstances, where the position of the person using them cannot be taken for granted, trade-offs are made for the sake of practicality. In areas where one has plenty of room, a long handle with a heavy head (like a sledge hammer) can deliver the maximum amount of energy to the target. But clearly, it's unreasonable to use a sledge hammer to drive upholstery tacks. Thus, the overall design has been modified repeatedly to achieve the optimum utility in a wide variety of situations. Effect of the handle. The handle of the hammer helps in several ways. It keeps the user's hands away from the point of impact. It provides a broad area that is better-suited for gripping by the hand. Most importantly, it allows the user to maximize the speed of the head on each blow. The primary constraint on additional handle length is the lack of space in which to swing the hammer. This is why sledge hammers, largely used in open spaces, can have handles that are much longer than a standard carpenter's hammer. The second most important constraint is more subtle. Even without considering the effects of fatigue, the longer the handle, the harder it is to guide the head of the hammer to its target at full speed. Most designs are a compromise between practicality and energy efficiency. Too long a handle: the hammer is inefficient because it delivers force to the wrong place, off-target. Too short a handle: the hammer is inefficient because it doesn't deliver enough force, requiring more blows to complete a given task. Recently, modifications have also been made with respect to the effect of the hammer on the user. A titanium head has about 3% recoil and can result in greater efficiency and less fatigue when compared to a steel head with about 27% recoil. Handles made of shock-absorbing materials or varying angles attempt to make it easier for the user to continue to wield this age-old device, even as nail guns and other powered drivers encroach on its traditional field of use. War hammers. The concept of putting a handle on a weight to make it more convenient to use may well have led to the very first weapons ever invented. The club is basically a variant of a hammer. In the Middle Ages, the war hammer became popular when edged weapons could no longer easily penetrate some forms of armour. Symbolic hammers. The hammer, being one of the most used tools by "Homo sapiens", has been used very much in symbols and arms. In the Middle Ages it was used often in blacksmith guild logos, as well as in many family symbols. The most recognised symbol with a hammer in it is the Hammer and Sickle, which was the symbol of the former Soviet Union. The hammer in this symbol represents the industrial working class (and the sickle the agricultural working class). The hammer is used in some coat of arms in (former) socialist countries like East Germany. In Norse Mythology, Thor, the god of thunder and lightning, wields a hammer named Mjolnir. Many artifacts of decorative hammers have been found leading many modern practitioners of this religion to often wear reproductions as a sign of their faith.