ratio of word probabilities predicted from brain for arm and chimney

close this window

arm

chimney

top 10 words in brain distribution (in article):
muscle human bone handle animal structure nerve contain join allow
top 10 words in brain distribution (in article):
build power wood design station line wall structure locomotive type
top 10 words in brain distribution (not in article):
cell iron blade body form head steel brain tissue organism
top 10 words in brain distribution (not in article):
material paint church train signal radio size electric surface window
times more probable under arm 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under chimney
(words not in the model)
In anatomy, an arm'" is one of the upper limbs of an animal. The term "arm" can also be used for analogous structures, such as one of the paired upper limbs of a four-legged animal, or the arms of cephalopods. In the lexicon of human anatomy, the term "arm" refers specifically to the segment between the shoulder and the elbow. The segment between the elbow and wrist is the forearm. However, in colloquial speech the term "arm" often refers to the entire upper limb from shoulder to wrist. In primates the arms are richly adapted for both climbing and for more skilled, manipulative tasks. The ball and socket shoulder joint allows for movement of the arms in a wide circular plane, while the presence of two forearm bones which can rotate around each other allows for additional range of motion at this level. Anatomy of the human arm. The human arm contains 30 bones, joints, muscles, nerves, and blood vessels. Many of these muscles are used for everyday tasks. Bony structure and joints. The humerus is the (upper) arm bone. It joins with the scapula above at the shoulder joint (or glenohumeral joint) and with the ulna and radius below at the elbow joint. Elbow joint. The elbow joint is the hinge joint between the distal end of the humerus and the proximal ends of the radius and ulna. The humerus cannot be broken easily. Its strength allows it to handle loading up to 300lbs. Osteofascial compartments. The arm is divided by a fascial layer (known as lateral and medial intermuscular septa) separating the muscles into two "osteofascial compartments": The fascia merges with the periosteum (outer bone layer) of the humerus. The compartments contain muscles which are innervated by the same nerve and perform the same action. Two other muscles are considered to be partially in the arm: Cubital fossa. The cubital fossa is clinically important for venepuncture and for blood pressure measurement. It is an imaginary triangle with borders being: The structures which pass through the cubital fossa are vital. The order from which they pass into the forearm are as follows, from medial to lateral: Nerve supply. The musculocutaneous nerve, from C5, C6, C7, is the main supplier of muscles of the anterior compartment. It originates from the lateral cord of the brachial plexus of nerves. It pierces the coracobrachialis muscle and gives off branches to the muscle, as well as to brachialis and biceps brachii. It terminates as the anterior cutaneous nerve of the forearm. The radial nerve, which is from the fifth cervical spinal nerve to the first thoracic spinal nerve, originates as the continuation of the posterior cord of the brachial plexus. This nerve enters the lower triangular space (an imaginary space bounded by, amongst others, the shaft of the humerus and the triceps brachii) of the arm and lies deep to the triceps brachii. Here it travels with a deep artery of the arm (the profunda brachii), which sits in the radial groove of the humerus. This fact is very important clinically as a fracture of the bone at the shaft of the bone here can cause lesions or even transections in the nerve. Other nerves passing through give no supply to the arm. These include: Arteries. The main artery in the arm is the brachial artery. This artery is a continuation of the axillary artery. The point at which the axillary becomes the brachial is distal to the lower border of teres major. The brachial artery gives off an important branch, the profunda brachii (deep artery of the arm). This branching occurs just below the lower border of teres major. The brachial artery continues to the cubital fossa in the anterior compartment of the arm. It travels in a plane between the biceps and triceps muscles, the same as the median nerve and basilic vein. It is accompanied by venae comitantes (accompanying veins). It gives branches to the muscles of the anterior compartment. The artery is in between the median nerve and the tendon of the biceps muscle in the cubital fossa. It then continues into the forearm. The profunda brachii travels through the lower triangular space with the radial nerve. From here onwards it has an intimate relationship with the radial nerve. They are both found deep to the triceps muscle and are located on the spiral groove of the humerus. Therefore fracture of the bone may not only lead to lesion of the radial nerve, but also haematoma of the internal structures of the arm. The artery then continues on to anastamose with the recurrent radial branch of the brachial artery, providing a diffuse blood supply for the elbow joint. Veins. The veins of the arm carry blood from the extremities of the limb, as well as drain the arm itself. The two main veins are the basilic and the cephalic veins. There is a connecting vein between the two, the median cubital vein, which passes through the cubital fossa and is clinically important for venepuncture (withdrawing blood). The basilic vein travels on the medial side of the arm and terminates at the level of the seventh rib. The cephalic vein travels on the lateral side of the arm and terminates as the axillary vein. It passes through the deltopectoral triangle, a space between the deltoid and the pectoralis major muscles. Fractures. Clavicle · Humerus · Monteggia · Galeazzi · Colles' · Smith's · Barton's · Scaphoid · Rolando · Bennett's · Boxer's. Distal Radius · Scapular A chimney'" is a structure for venting hot flue gases or smoke from a boiler, stove, furnace or fireplace to the outside atmosphere. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney, effect. The space inside a chimney is called a "flue". Chimneys may be found in buildings, steam locomotives and ships. In the US, the term smokestack'" (colloquially, "'stack'") is also used when referring to locomotive chimneys. The term "'funnel'" is generally used for ships' chimneys and sometimes to refer to locomotive chimneys.. Chimneys are tall to increase their draw of air for combustion and to disperse pollutants in the flue gases over a greater area so as to reduce the pollutant concentrations in compliance with regulatory or other limits. History. Romans used tubes inside the walls to draw smoke out of bakeries but real chimneys appeared only in northern Europe in the 12th century. Industrial chimneys became common in the late 18th century. The earliest extant example of an English chimney is at Conisborough Keep in Yorkshire, which dates from 1185 AD. Chimneys have traditionally been built of brick, both in small and large buildings. Early chimneys were of a simple brick construction. Later chimneys were constructed by placing the bricks around tile liners. To control downdrafts venting caps (often called "chimney pots") with a variety of designs are sometimes placed on the top of chimneys. In the eighteenth and nineteenth centuries, the methods used to extract lead from its ore produced large amounts of toxic fumes. In the north of England, long near-horizontal chimneys were built, often more than 3 km (2 mi) long, which typically terminated in a short vertical chimney in a remote location where the fumes would cause less harm. Lead and silver deposits formed on the inside of these long chimneys, and periodically workers would be sent along the chimneys to scrape off these valuable deposits. Construction. Due to brick's limited ability to handle transverse loads, chimneys in houses were often built in a "stack", with a fireplace on each floor of the house sharing a single chimney, often with such a stack at the front and back of the house. Today's central heating systems have made chimney placement less critical, and the use of non-structural gas vent pipe allows a flue gas conduit to be installed around obstructions and through walls. In fact, many modern high-efficiency heating appliances do not require a chimney. Such appliances are typically installed near an outside wall, and a noncombustible wall thimble allows vent pipe to be run directly through the outside wall. Industrial chimneys are commonly referred to as flue gas stacks and are typically external structures, as opposed to being built into the wall of a building. They are generally located adjacent to a steam-generating boiler or industrial furnace and the gases are carried to it with ductwork. Today the use of reinforced concrete has almost entirely replaced brick as a structural component in the construction of industrial chimneys. Refractory bricks are often used as a lining, particularly if the type of fuel being burned generates flue gases containing acids. Modern industrial chimneys sometimes consist of a concrete windshield with a number of flues on the inside. The 300 metre chimney at Sasol Three consists of a 26 metre diameter windshield with four 4.6 metre diameter concrete flues which are lined with refractory bricks built on rings of corbels spaced at 10 metre intervals. The reinforced concrete can be cast by conventional formwork or sliding formwork. The height is to ensure the pollutants are dispersed over a wider area to meet legislative or safety requirements. Chimney tops. A chimney pot is placed on top of the chimney to inexpensively extend the length of the chimney, and to improve the chimney's draft. A chimney with more than one pot on it indicates that there is more than one fireplace on different floors sharing the chimney. A chimney cowl is placed on top of the chimney to prevent birds and squirrels from nesting in the chimney. They often feature a rain guard to keep rain from going down the chimney. A metal wire mesh is often used as a spark arrestor to minimize burning debris from rising out of the chimney and making it onto the roof. Although the masonry inside the chimney can absorb a large amount of moisture which later evaporates, rainwater can collect at the base of the chimney. Sometimes weep holes are placed at the bottom of the chimney to drain out collected water. A chimney cowl or wind directional cap is helmet shaped chimney cap that rotates to align with the wind and prevent a backdraft of smoke and wind back down the chimney. An H-style cap'" (cowl) is a chimney top constructed from chimney pipes shaped like the letter H. It is an age old method to regulate draft in situations where prevailing winds or turbulences cause down draft and backpuffing. Although the "'H cap'" has a distinctive advantage over most other downdraft caps, it fell out of favor because of it bulky looks. It is found mainly in marine use but has been gaining popularity again due to its energy saving functionality. The "'H-cap stabilizes the draft rather than increasing it. Other down draft caps are based on the Venturi effect, solving downdraft problems by increasing the up draft constantly resulting in much higher fuel consumption. A chimney damper is a metal spring door placed at the top of the chimney with a long metal chain that allows you to open and close the chimney from the fireplace. In the late Middle Ages in Western Europe the design of crow-stepped gables arose to allow maintenance access to the chimney top, especially for tall structures such as castles and great manor houses. Chimney draught or draft. When coal, oil, natural gas, wood or any other fuel is combusted in a stove, oven, fireplace, hot water boiler or industrial furnace, the hot combustion product gases that are formed are called flue gases. Those gases are generally exhausted to the ambient outside air through chimneys or industrial flue gas stacks (sometimes referred to as smokestacks). The combustion flue gases inside the chimneys or stacks are much hotter than the ambient outside air and therefore less dense than the ambient air. That causes the bottom of the vertical column of hot flue gas to have a lower pressure than the pressure at the bottom of a corresponding column of outside air. That higher pressure outside the chimney is the driving force that moves the required combustion air into the combustion zone and also moves the flue gas up and out of the chimney. That movement or flow of combustion air and flue gas is called "natural draught draft", "natural ventilation", "chimney effect", or "stack effect". The taller the stack, the more draught or draft is created. Designing chimneys and stacks to provide the correct amount of natural draught or draft involves a number design factors, many of which require trial-and-error reiterative methods. As a "first guess" approximation, the following equation can be used to estimate the natural draught draft flow rate by assuming that the molecular mass (i.e., molecular weight) of the flue gas and the external air are equal and that the frictional pressure and heat losses are negligible: Drawbacks. A characteristic problem of chimneys is they develop deposits of creosote on the walls of the structure when used with wood as a fuel. Some types of wood, such as pine, generate more creosote than others. Deposits of this substance can interfere with the airflow and more importantly, they are flammable and can cause dangerous chimney fires if the deposits ignite in the chimney. Thus, it is recommended and in some countries even mandatory that chimneys be inspected annually and cleaned on a regular basis to prevent these problems. The workers who perform this task professionally are called chimney sweeps. In the middle ages in some parts of Europe, a crow-stepped gable design was developed, partially to provide access to chimneys without use of ladders. Masonry (brick) chimneys have also proved particularly susceptible to crumbling during earthquakes. Government housing authorities in quake-prone cities like San Francisco and Los Angeles now recommend building new homes with stud-framed chimneys around a metal flue. Bracing or strapping old masonry chimneys has not proved to be very effective in preventing damage or injury from earthquakes. Perhaps predictably, a new industry provides "faux-brick" facades to cover these modern chimney structures. Other problems include "spalling" brick, in which moisture seeps into the brick and then freezes, cracking and flaking the brick and loosening mortar seals. Dual-use chimneys. Some very high chimneys are used for carrying antennas of mobile phone services and low power FM TV-transmitters. Special attention must be paid to possible corrosion problems if these antennas are near the exhaust of the chimney. In some cases the chimneys of power stations are used also as pylons. However this type of construction is not very common, because of corrosion problems of conductor cables. The Dům Dětí a Mládeže v Modřanech in Prague, Czech Republic is equipped with an observation deck. Cooling tower used as an industrial chimney. At some power stations, which are equipped with plants for the removal of sulfur dioxide and nitrogen oxides, it is possible to use the cooling tower as a chimney. Such cooling towers can be seen in Germany at the Power Station Staudinger Grosskrotzenburg and at the Power Station Rostock. At power stations that are not equipped for removing sulfur dioxide, such usage of cooling towers could result in serious corrosion problems.