arch |
beetle |
top 10 words in brain distribution (in article): build state world time century term park building refer form |
top 10 words in brain distribution (in article): species bird egg plant insect food female form family live |
top 10 words in brain distribution (not in article): city house store street town home tea Unite bus people |
top 10 words in brain distribution (not in article): fish ant produce bee fruit nest time snake grow shark |
times more probable under arch 30 20 10 6 4 2.5 1.25 1 1.25 2.5 4 6 10 20 30 times more probable under beetle (words not in the model) | |
An arch'" is a structure that spans a space while supporting weight (e.g. a doorway in a stone wall). Arches appeared as early as the 2nd millennium BC in Mesopotamian brick architecture, but their systematic use started with the Ancient Romans who were the first to apply the technique to a wide range of structures. History. Arches were known by the Mesopotamian, Urartian, Harappan, Egyptian, Babylonian, Greek and Assyrian civilizations, but their use was infrequent and mostly confined to underground structures such as drains where the problem of lateral thrust is greatly diminished. The ancient Romans learned the arch from the Etruscans, refined it and were the first builders to tap its full potential for above ground buildings: "The Romans were the first builders in Europe, perhaps the first in the world, fully to appreciate the advantages of the arch, the vault and the dome." Throughout the Roman empire, their engineers erected arch structures such as bridges, aqueducts, and gates. They also introduced the triumphal arch as a military monument. Vaults began to be used for roofing large interior spaces such as halls and temples, a function which was also assumed by domed structures from the 1st century BC onwards. The Roman arch is semicircular, and built from an odd number of arch bricks (called "voussoirs"). An odd number of bricks is required for there to be a "capstone" or "keystone", the topmost stone in the arch. The Roman arch's shape is the simplest to build, but not the strongest. There is a tendency for the sides to bulge outwards, which must be counteracted by an added weight of masonry to push them inwards. The Romans used this type of semicircular arch freely in many of their secular structures such as aqueducts, palaces and amphitheaters. The semicircular arch was followed in Europe by the pointed Gothic arch or ogive (derived from the Islamic pointed arch in Moorish Spain), whose centreline more closely followed the forces of compression and which was therefore stronger. The semicircular arch can be flattened to make an elliptical arch as in the Ponte Santa Trinita. The parabolic and catenary arches are now known to be the theoretically strongest forms. Parabolic arches were introduced in construction by the Spanish architect Antoni Gaudí, who admired the structural system of Gothic style, but for the buttresses, which he termed “architectural crutches”. The catenary and parabolic arches carry all horizontal thrust to the foundation and so do not need additional elements. The horseshoe arch is based on the semicircular arch, but its lower ends are extended further round the circle until they start to converge. The first examples known are carved into rock in India in the first century AD, while the first known built horseshoe arches are known from Aksum (modern day Ethiopia and Eritrea) from around the 3rd–4th century, around the same time as the earliest contemporary examples in Syria, suggesting either an Aksumite or Syrian origin for the type of arch. It was used in Spanish Visigothic architecture, Islamic architecture and mudéjar architecture, as in the Great Mosque of Damascus and in later Moorish buildings. It was used for decoration rather than for strength. Across the ocean in Mexico and Central America, Mesoamerican civilizations created various types of corbelled arches, such as with the interior tunnels in the Great Pyramid of Cholula and the many styles of corbelled arches built by the Mayan civilization. In Peru, the Inca civilization used a trapezoidal arch in their architecture. The arch is still used today in some modern structures such as bridges. Construction. An arch requires all of its elements to hold it together, raising the question of how an arch is constructed. One answer is to build a frame (historically, of wood) which exactly follows the form of the underside of the arch. This is known as a centre or centring. The voussoirs are laid on it until the arch is complete and self-supporting. For an arch higher than head height, scaffolding would in any case be required by the builders, so the scaffolding can be combined with the arch support. Occasionally arches would fall down when the frame was removed if construction or planning had been incorrect. (The A85 bridge at Dalmally, Scotland suffered this fate on its first attempt, in the 1940s). The interior and lower line or curve of an arch is known as the "intrados". Old arches sometimes need reinforcement due to decay of the keystones, known as bald arch. The gallery shows arch forms displayed in roughly the order in which they were developed. Technical aspects. The arch is significant because, in theory at least, it provides a structure which eliminates tensile stresses in spanning an open space. All the forces are resolved into compressive stresses. This is useful because several of the available building materials such as stone, cast iron and concrete can strongly resist compression but are very weak when tension, shear or torsional stress is applied to them. By using the arch configuration, significant spans can be achieved. This is because all the compressive forces hold it together in a state of equilibrium. This even applies to frictionless surfaces. However, one downside is that an arch pushes outward at the base, and this needs to be restrained in some way, either with heavy sides and friction or angled cuts into bedrock or similar. This same principle holds when the force acting on the arch is not vertical such as in spanning a doorway, but horizontal, such as in arched retaining walls or dams. Even when using concrete, where the structure may be monolithic, the principle of the arch is used so as to benefit from the concrete's strength in resisting compressive stress. Where any other form of stress is raised, it has to be resisted by carefully placed reinforcement rods or fibres. (See Arch bridge.) Other types. The Delicate Arch, a natural arch in Moab, UtahA blind arch is an arch infilled with solid construction so it cannot function as a window, door, or passageway. A dome is a three-dimensional application of the arch, rotated about the center axis. Igloos are notable vernacular structures making use of domes. Natural rock formations may also be referred to as arches. These natural arches are formed by erosion rather than being carved or constructed by man. See Arches National Park for examples. A special form of the arch is the triumphal arch, usually built to celebrate a victory in war. A famous example is the Arc de Triomphe in Paris, France. A vault is an application of the arch extended horizontally in two dimensions; the groin vault is the intersection of two vaults. | Beetles'" are the group of insects with the largest number of known species. They are placed in the order "'Coleoptera'" (from Greek, "koleos", "sheath"; and, "pteron", "wing", thus "sheathed wing"), which contains more described species than in any other order in the animal kingdom, constituting about 25% of all known life-forms. 40% of all described insect species are beetles (about 350,000 species), and new species are frequently discovered. Estimates put the total number of species, described and undescribed, at between 5 and 8 million. Beetles can be found in almost all habitats, but are not known to occur in the sea or in the polar regions. They interact with their ecosystems in several ways. They often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are prey of various animals including birds and mammals. Certain species are agricultural pests, such as the Colorado potato beetle "Leptinotarsa decemlineata", the boll weevil "Anthonomus grandis", the red flour beetle "Tribolium castaneum", and the mungbean or cowpea beetle "Callosobruchus maculatus", while other species of beetles are important controls of agricultural pests. For example, beetles in the family Coccinellidae ("ladybirds" or "ladybugs") consume aphids, scale insects, thrips, and other plant-sucking insects that damage crops. Description. The name "Coleoptera" was given by Aristotle for the hardened shield-like forewing (coleo= shield+ ptera= wing). Other characters of this group which are believed to be monophyletic include a holometabolous life cycle; having a prothorax that is distinct from and freely articulating with the mesothorax; the meso- and meta-thoracic segments fusing to form a pterothorax; a depressed body shape with the legs on the ventral surface; the coxae of legs recessed into cavities formed by heavily sclerotized thoracic sclerites; the abdominal sternites more sclerotized than the tergites; antennae with 11 or fewer segments; and terminal genitalic appendages retracted into the abdomen and invisible at rest. The general anatomy of beetles is quite uniform, although specific organs and appendages may vary greatly in appearance and function between the many families in the order. Like all insects, beetles' bodies are divided into three sections: the head, the thorax, and the abdomen. When viewed from below, the thorax is that part from which all three pairs of legs and both pairs of wings arise. The abdomen is everything posterior to the thorax. When viewed from above, most beetles appear to have three clear sections, but this is deceptive: on the beetle's upper surface, the middle "section" is a hard plate called the pronotum, which is only the front part of the thorax; the back part of the thorax is concealed by the beetle's wings. Like all arthropods, beetles are segmented organisms, and all three of the major sections of the body are themselves composed of several further segments, although these are not always readily discernible. This further segmentation is usually best seen on the abdomen. Beetles are generally characterised by a particularly hard exoskeleton and hard forewings (elytra). The beetle's exoskeleton is made up of numerous plates called sclerites, separated by thin sutures. This design creates the armoured defences of the beetle while maintaining flexibility. The elytra are not used for flight, but tend to cover the hind part of the body and protect the second pair of wings ("alae"). The elytra must be raised in order to move the hind flight wings. A beetle's flight wings are crossed with veins and are folded after landing, often along these veins, and are stored below the elytra. In some beetles, the ability to fly has been lost. These include the ground beetles (family Carabidae) and some "true weevils" (family Curculionidae), but also some desert and cave-dwelling species of other families. Many of these species have the two elytra fused together, forming a solid shield over the abdomen. In a few families, both the ability to fly and the elytra have been lost, with the best known example being the glow-worms of the family Phengodidae, in which the females are larviform throughout their lives. Beetles have mouthparts similar to those of grasshoppers. Of these parts, the most commonly known are probably the mandibles, which appear as large pincers on the front of some beetles. The mandibles are a pair of hard, often tooth-like structures that move horizontally to grasp, crush, or cut food or enemies (see defence, below). Two pairs of finger-like appendages are found around the mouth in most beetles, serving to move food into the mouth. These are the maxillary and labial palpi. The eyes are compound and may display remarkable adaptability, as in the case of whirligig beetles (family Gyrinidae), in which the eyes are split to allow a view both above and below the waterline. Other species also have divided eyes — some longhorn beetles (family Cerambycidae) and weevils — while many beetles have eyes that are notched to some degree. A few beetle genera also possess ocelli, which are small, simple eyes usually situated farther back on the head (on the vertex). Beetles' antennae are primarily organs of smell, but may also be used to feel out a beetle's environment physically. They may also be used in some families during mating, or among a few beetles for defence. Antennae vary greatly in form within the Coleoptera, but are often similar within any given family. In some cases, males and females of the same species will have different antennal forms. Antennae may be clavate (flabellate and lamellate are sub-forms of clavate, or clubbed antennae), filiform, geniculate, moniliform, pectinate, or serrate. For images of these antennal forms see antenna (biology). The legs, which are multi-segmented, end in two to five small segments called tarsi. Like many other insect orders beetles bear claws, usually one pair, on the end of the last tarsal segment of each leg. While most beetles use their legs for walking, legs may be variously modified and adapted for other uses. Among aquatic families — Dytiscidae, Haliplidae, many species of Hydrophilidae and others — the legs, most notably the last pair, are modified for swimming and often bear rows of long hairs to aid this purpose. Other beetles have fossorial legs that are widened and often spined for digging. Species with such adaptations are found among the scarabs, ground beetles, and clown beetles (family Histeridae). The hind legs of some beetles, such as flea beetles (within Chrysomelidae) and flea weevils (within Curculionidae), are enlarged and designed for jumping. Oxygen is obtained via a tracheal system. Air enters a series of tubes along the body through openings called spiracles, and is then taken into increasingly finer fibres. Pumping movements of the body force the air through the system. Beetles have hemolymph instead of blood, and the open circulatory system of the beetle is powered by a tube-like heart attached to the top inside of the thorax. Development. Beetles are endopterygotes with complete metamorphosis. A single female may lay from several dozen to several thousand eggs during her lifetime. Eggs are usually laid according to the substrate the larva will feed on upon hatching. Among others, they can be laid loose in the substrate (e.g. flour beetle), laid in clumps on leaves (e.g. Colorado potato beetle), or individually attached (e.g. mungbean beetle and other seed borers) or buried in the medium (e.g. carrot weevil). The larva is usually the principal feeding stage of the beetle life cycle. Larvae tend to feed voraciously once they emerge from their eggs. Some feed externally on plants, such as those of certain leaf beetles, while others feed within their food sources. Examples of internal feeders are most Buprestidae and longhorn beetles. The larvae of many beetle families are predatory like the adults (ground beetles, ladybirds, rove beetles). The larval period varies between species but can be as long as several years. Beetle larvae can be differentiated from other insect larvae by their hardened, often darkened head, the presence of chewing mouthparts, and spiracles along the sides of the body. Like adult beetles, the larvae are varied in appearance, particularly between beetle families. Beetles whose larvae are somewhat flattened and are highly mobile are the ground beetles, some rove beetles, and others; their larvae are described as campodeiform. Some beetle larvae resemble hardened worms with dark head capsules and minute legs. These are elateriform larvae, and are found in the click beetle (Elateridae) and darkling beetle (Tenebrionidae) families. Some elateriform larvae of click beetles are known as wireworms. Beetles in the families of the Scarabaeoidea have short, thick larvae described as scarabaeiform, but more commonly known as grubs. All beetle larvae go through several instars, which are the developmental stages between each moult. In many species the larvae simply increase in size with each successive instar as more food is consumed. In some cases, however, more dramatic changes occur. Among certain beetle families or genera, particularly those that exhibit parasitic lifestyles, the first instar (the planidium) is highly mobile in order to search out a host, while the following instars are more sedentary and remain on or within their host. This is known as hypermetamorphosis; examples include the blister beetles (family Meloidae) and some rove beetles, particularly those of the genus "Aleochara". As with all endopterygotes, beetle larvae pupate, and from this pupa emerges a fully formed, sexually mature adult beetle, or imago. Adults have an extremely variable lifespan, from weeks to years, depending on the species. Reproduction. Beetles may display extremely intricate behaviour when mating. Pheromone communication is thought to be important in the location of a mate. Conflict can play a part in the mating rituals of species such as burying beetles (genus "Nicrophorus") where conflicts between males and females rage until only one of each is left, thus ensuring reproduction by the strongest and fittest. Many male beetles are territorial and will fiercely defend their small patch of territory from intruding males. In such species, the males may often have horns on the head and or thorax, making their overall body lengths greater than those of the females, unlike most insects. Pairing is generally short but in some cases will last for several hours. During pairing sperm cells are transferred to the female to fertilise the egg. Parental care varies between species, ranging from the simple laying of eggs under a leaf to certain scarab beetles, which construct underground structures complete with a supply of dung to house and feed their young. Other beetles are leaf rollers, biting sections of leaves to cause them to curl inwards, then laying their eggs, thus protected, inside. Defense. Beetles and their larvae have a variety of strategies to avoid being attacked by predators or parasitoids. These include camouflage, mimicry, toxicity, and active defense. Camouflage involves the use of colouration or shape to blend into the surrounding environment. This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various coloured scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate. Another defence that often uses colour or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless. This defence can be found to a lesser extent in other beetle families, such as the scarab beetles. Beetles may combine their colour mimicry with behavioural mimicry, acting like the wasps they already closely resemble. Many beetle species, including ladybirds, blister beetles, and lycid beetles can secrete distasteful or toxic substances to make them unpalatable or even poisonous. These same species often exhibit aposematism, where bright or contrasting colour patterns warn away potential predators, and there are, not surprisingly, a great many beetles and other insects that mimic these chemically-protected species. Large ground beetles and longhorn beetles may defend themselves using strong mandibles and or spines or horns to forcibly persuade a predator to seek out easier prey. Others, such as bombardier beetles (within Carabidae), may spray chemicals from their abdomen to repel predators. Feeding. Besides being abundant and varied, the Coleoptera are able to exploit the wide diversity of food sources available in their many habitats. Some are omnivores, eating both plants and animals. Other beetles are highly specialised in their diet. Many species of leaf beetles, longhorn beetles, and weevils are very host specific, feeding on only a single species of plant. Ground beetles and rove beetles (family Staphylinidae), among others, are primarily carnivorous and will catch and consume many other arthropods and small prey such as earthworms and snails. While most predatory beetles are generalists, a few species have more specific prey requirements or preferences. Decaying organic matter is a primary diet for many species. This can range from dung, which is consumed by coprophagous species such as certain scarab beetles (family Scarabaeidae), to dead animals, which are eaten by necrophagous species such as the carrion beetles (family Silphidae). Some of the beetles found within dung and carrion are in fact predatory, such as the clown beetles, preying on the larvae of coprophagous and necrophagous insects. Adaptations to the environment. Aquatic beetles use several techniques for retaining air beneath the water's surface. Beetles of the family Dytiscidae hold air between the abdomen and the elytra when diving. Hydrophilidae have hairs on their under surface that retain a layer of air against their bodies. Adult crawling water beetles use both their elytra and their hind coxae (the basal segment of the back legs) in air retention while whirligig beetles simply carry an air bubble down with them whenever they dive. Evolutionary history and classification. While some authorities believe modern beetles began about 140 million years ago, research announced in 2007 showed that beetles may have entered the fossil record during the Lower Permian, about 265 to 300 million years ago. The four extant suborders of beetle are these: These suborders diverged in the Permian and Triassic. Their phylogenetic relationship is uncertain, with the most popular hypothesis being that Polyphaga and Myxophaga are most closely related, with Adephaga as the sister group to those two, and Archostemata as sister to the other three collectively. There are about 350,000 species of beetles. Such a large number of species poses special problems for classification, with some families consisting of thousands of species and needing further division into subfamilies and tribes. Pests. Many agricultural, forestry, and household insect pests are beetles. These include the following: Beneficial organisms. Some farmers develop beetle banks to foster and provide cover for beneficial beetles. Beetles of the Dermestidae family are often used in taxidermy to clean bones of remaining flesh. Beetles in ancient Egypt and other cultures. Several species of dung beetle, most notably "Scarabaeus sacer" (often referred to as "scarab"), enjoyed a sacred status among the ancient Egyptians, as the creatures were likened to the major god Khepri. Some scholars suggest that the Egyptians' practice of making mummies was inspired by the brooding process of the beetle. Many thousands of amulets and stamp seals have been excavated that depict the scarab. In many artifacts, the scarab is depicted pushing the sun along its course in the sky, much as scarabs push or roll balls of dung to their brood sites. During and following the New Kingdom, scarab amulets were often placed over the heart of the mummified deceased. Some tribal groups, particularly in tropical parts of the world, use the colourful, iridescent elytra of certain beetles, especially certain Scarabaeidae, in ceremonies and as adornment. Study and collection. The study of beetles is called coleopterology'" (from "Coleoptera", see above, and Greek, "-logia"), and its practitioners are "coleopterists" (see this list). Coleopterists have formed organisations to facilitate the study of beetles. Among these is The Coleopterists Society, an international organisation based in the United States. Such organisations may have both professionals and amateurs interested in beetles as members. Research in this field is often published in peer-reviewed journals specific to the field of coleopterology, though journals dealing with general entomology also publish many papers on various aspects of beetle biology. Some of the journals specific to beetle research are: There is a thriving industry in the collection of beetle specimens for amateur and professional collectors. Many coleopterists prefer to collect beetle specimens for themselves, recording detailed information about each specimen and its habitat. Such collections add to the body of knowledge about the Coleoptera. Some countries have established laws governing or prohibiting the collection of certain rare (and often much sought after) species. One such beetle whose collection is illegal or restricted is the American burying beetle, "Nicrophorus americanus". |