
Simitar: simplified searching of statistically significant similarity structure

Francisco Pereira
Imaging and Computer Vision

Siemens Corporation, Corporate Technology
755 College Road E, Princeton NJ 08540

francisco-pereira@siemens.com

Matthew Botvinick
Psychology Department and Princeton Neuroscience Institute

Princeton University
Princeton NJ 08540

matthewb@princeton.edu

Abstract—This paper describes Simitar, a toolbox for study-
ing the similarity structure of patterns of brain activation in
different experimental conditions. We focus on supporting two
types of analysis, namely, the calculation of local similarity
matrices for all locations in the brain and the identification
of locations where similarity has a desired structure, via an
intuitive interface.

I. INTRODUCTION

Over the last five years there has been a growing interest
in directly studying the representations of different stimuli
in the brain [5]. This can be done purely to compare the
similarity of representations 1 in different regions of interest
(ROIs), or to compare them with those coming from animal
studies [4], behavioural similarity judgements [9], models
or other hypothesized structure of similarity between those
stimuli [1], or even to perform decoding tasks across subjects
[8].

The work above spans a range of spatial scales of similar-
ity structure, and features different notions of what makes a
particular structure interesting. We believe that those various
possibilities can be encompassed by two general analysis
procedures:

1) Producing a similarity map - This entails finding a
similarity matrix in every possible location of interest;
a location can be anything from a small 3 × 3 × 3
searchlight to an entire ROI.

2) Producing a similarity structure score map - This re-
quires specifying what characteristics are (un)desirable
in a similarity matrix and producing a numeric score
for how well a given matrix embodies those char-
acteristics; at the simplest level, one should be able
to express something like “condition A is similar to
condition B but dissimilar to C, with other conditions
being irrelevant”. Given this, a score can them be
computed for each location in the similarity map.

Simitar is a MATLAB/Octave toolbox that implements
these procedures in an efficient manner; an entire similarity
map containing correlation or euclidean distance matrices for
every searchlight in the brain can be produced in seconds.

1Sometimes what is considered is the dissimilarity between representa-
tions; we will use “similarity” throughout the paper to refer to both kinds.

The toolbox can be used in an exploratory fashion, where
one might display all similarity matrices in a slice of interest
or the similarity structure score map for the entire brain. It
can also be used to test hypotheses about the presence of
certain similarity characteristics, as it runs fast enough to
make permutation tests feasible.

Finally, we note that it would be possible to run similar
analyses using a general-purpose toolbox for analyzing brain
imaging data, such as PyMVPA [3]. The main advantage of
Simitar is that, in focusing solely on the key procedures, it
has been optimized to perform them very efficiently. It also
makes it easy for a user to try it as a black box, as there
is little to learn besides how to prepare data for use and
how to specify the similarity structure one is looking for.
Finally, it is simple for a more advanced user to implement
different methods for scoring desired similarity structures,
and to write their own permutation tests around the core
code.

II. DEMONSTRATION

A. Mock dataset

We will demonstrate the capabilities of Simitar using a
mock dataset that simulates the results of an experiment in
phonetic perception, using as stimuli video recordings of
someone saying a particular phoneme. The experiment aims
to study the McGurk Effect [6], a phenomenon whereby a
subject hearing audio of someone saying a phoneme (BA)
and video of them articulating a different phoneme (GA)
perceives a third phoneme (DA). Experiment trials belong
to one of these four conditions:

1) three where subjects see audio and video of someone
saying BA, GA or DA, labelled with the phoneme
name

2) one where they see mismatched audio (BA) and video
(GA), which we will label MC (for McGurk)

The mock brain has a single slice, divided into 4 regions-
of-interest (ROIs), associated with auditory, visual and per-
ceptual representations, as well as ”other things” that are
common to all conditions. This is shown in Figure 1.

In each condition a subject will hear, see and perceive
something, so each condition gives rise to a pattern of



Figure 1. Mock brain, divided into ROIs

Figure 2. The patterns of activation across the brain, in the 4 conditions

activation in each of the four ROIs. We designed the dataset
so that our experimental hypothesis was true:

• BA and MC share a pattern in the auditory ROI (subject
hears the same)

• GA and MC share a pattern in the visual ROI (subject
sees the same)

• DA and MC share a pattern in the “perception” ROI
(subject perceives the same)

• all 4 conditions have the same pattern of activation over
the remaining ROI

and this is illustrated in Figure 2.
The patterns of activation in each condition were used to

generate a dataset by corrupting them with noise for each
trial. The dataset produced had one such image per trial, and
10 trials of each condition in each of 4 ”runs”.

B. Producing similarity maps

Simitar can produce a local similarity matrix between the
patterns of activity in all conditions, considered over all
the voxels inside a given searchlight; the measure can be
correlation, euclidean distance or a number of others. Fig-
ure 3 shows the correlation and euclidean distance matrices
obtained in the 3× 3× 3 searchlight around each voxel on
the mock brain, laid out on their respective locations.

Figure 3. Top: correlation matrices for all searchlights in the mock brain
Bottom: same as top, using euclidean distance

C. Producing similarity structure score maps

A similarity map can be used for exploratory data anal-
ysis, or if locations of interest are specified a priori. If,
instead, the goal is to find locations where similarity struc-
ture displays certain characteristics, we first need to specify
those. For instance, let us consider correlation matrices and
suppose that we would like to find locations where BA
is represented similarly to McGurk but differently from
everything else. Intuitively, we want matrices where the cor-
relation between BA and McGurk is high but that between
BA and everything else (and McGurk and everything else)
is low.

Simitar allows you to specify this through a similarity
structure scoring scoring matrix



Figure 4. Top: similarity structure score maps for locations where each
condition is similar to McGurk but dissimilar from others, using correlation
Bottom: same as top, using euclidean distance

Figure 5. Locations where the result of the similarity score test was
deemed significant.

BA GA DA MC
BA 0 -1 -1 +1
GA -1 0 0 -1
DA -1 0 0 -1
MC +1 -1 -1 0

This matrix is multiplied elementwise by each searchlight
similarity matrix and the elements of the resulting matrix
are summed to produce a score. As desired, the higher
the correlation between BA and McGurk the higher the
score, but it will be penalized by correlation between other
conditions and McGurk (0 entries are ignored). Simitar will,
by default, automatically scale entries of this matrix so that
the weight of rewards and penalties is balanced (i.e. penalty
entries become − 1

4 , reward entries remain 1). We can thus
produce a similarity structure map for the similarity structure
scoring matrix above as well as analogous matrices for GA
and DA, as shown at the top of Figure 4.

The same may be done using euclidean distance, except
in this case the matrix should reward closeness between
representations and penalize distance, i.e. again for BA
similar to McGurk but different from everything else

BA GA DA MC
BA 0 +1 +1 -1
GA +1 0 0 +1
DA +1 0 0 +1
MC -1 +1 +1 0

and the resulting map is shown at the bottom of Figure 4.

D. Statistical testing of similarity structure score maps

The similarity structure score maps above can be used for
exploratory data analysis, but it is also possible to transform

them into p-value maps by using permutation tests. Simitar
supports two varieties:

1) Permute over example labels - If there are many
examples of each condition, we can permute over their
labels, within each run, and obtain a similarity struc-
ture map for that permutation. Repeated over many
permutations, this yields a permutation distribution for
the score at each voxel and a p-value for the score
obtained using the original labels.

2) Permute over entries of the scoring matrix - If there
are one or very few examples of each condition (e.g.
one used deconvolution over many trials to get a
single beta coefficient image as the example for one
condition) there will likely not be enough examples
to permute over example labels. One can, instead,
permute over all distinct pairs of conditions in the
score matrix (e.g. in our mock dataset there are only
six, so hence 6!=720 permutations).

Note that the implicit null hypotheses are different in
each case. In the first, we are assuming that there is no
information in the condition labels, and this is the more
typical test. In the second the implicit assumption is that the
specific similarity structure scoring matrix selected does not
matter (among all scoring matrices with the same numbers of
-1/0+1). Figure 5 shows the locations where correlation sim-
ilarity structure score was deemed significant, using 10000
permutations (of the first variety) and correcting for multiple
comparisons using False Discovery Rate [2],(q = 0.01), for
similarity structure scoring matrixes picking BA similar to
MC, GA similar to MC and DA similar to MC, respectively.

E. Real dataset

We used Simitar to analyze the dataset from the pa-
per ”Predicting Human Brain Activity Associated with the
Meanings of Nouns” [7], which the authors have very kindly
made public 2. The examples used are from subject P1 and
belong to one of 12 semantic categories 3. For illustration
we will look for locations where ’kitchen utensils’ are rep-
resented similarly to ’tools’ but differently from everything
else. The score matrix would then be (columns 8 and 10
correspond to ’kitchen utensils’ and ’tools’):

0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0

-1 -1 -1 -1 -1 -1 -1 0 -1 +1 -1 -1
0 0 0 0 0 0 0 -1 0 -1 0 0

-1 -1 -1 -1 -1 -1 -1 +1 -1 0 -1 -1

2http://www.cs.cmu.edu/∼tom/science2008/
3The categories are ’animal’, ’body parts’, ’buildings, ’building parts,

’clothing’, ’furniture’, ’insect’, ’kitchen utensils’, ’man-made objects’,
’tools’, ’vegetable’ and ’vehicle’.



Figure 6. Top: Similarity structure score maps for ’kitchen utensils’ similar
to ’tools’, using euclidean distance. Bottom: Locations where the structure
score was deemed significant, using 10000 permutations and FDR = 0.01.

Figure 7. Correlation matrix in the location with the highest similarity
structure score.

0 0 0 0 0 0 0 -1 0 -1 0 0
0 0 0 0 0 0 0 -1 0 -1 0 0

and, flipped for euclidean distance, would give rise to the
structure score and significance maps shown in Figure 6.
Several hundred voxels are deemed significant and those
with the highest scores are in reasonable AAL ROIs in
the occipital (Occipital_Mid_L and Calcarine_R),
temporal (Lingual_R and Fusiform_R) and frontal
(Frontal_Inf_Tri_R) lobes. Interpreting these is be-
yond the scope of this paper.

If we now look at the correlation matrix in the location
with the highest score, show in Figure 7, it is clear that it
matches the structure we specified, in that ’kitchen utensils’
and ’tools’ are represented similarly to each other, but dis-
similarly from other things. Note that ’buildings’, ’building
parts’ and ’furniture’ are also represented similarly to each
other in the same location; the structure matrix did not
reward or penalize this. In order to understand what was
being represented you could now look at the patterns of
activation in the appropriate searchlight; it is possible that
certain conditions have similar representations because there
is little activation, for instance.

The dataset used had 360 examples and around 20000
voxels. It took Simitar ∼ 0.3 seconds to compute all 3×3×3
searchlight correlation matrices and ∼ 0.17 seconds to
compute all euclidean distance matrices; the times using
pdist and squareform in MATLAB were ∼ 7 seconds
and ∼ 5 seconds, respectively, sharing the rest of the toolbox
code. Note that the speed in all cases is due to the fact that all
searchlight neighbourhood relationships are pre-computed
before running the code (a step which takes ∼ 1 second).
All timings were obtained by computing the average of 30
runs on a 2.5GHz Intel Core i5 machine running MATLAB
R2012a.

F. Distribution

Simitar is available online from http:\\minerva.csbmb.
princeton.edu\simitarbeta. The site includes a demo, syn-
thetic data for the mock brain and tutorials covering both
data preparation and the use of the toolbox to produce all
the plots shown in this paper.
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Abdi, and James V Haxby. The representation of biological
classes in the human brain. The Journal of Neuroscience,
32(8):2608–2618, 2012.

[2] Christopher R Genovese, Nicole A Lazar, and Thomas Nichols.
Thresholding of statistical maps in functional neuroimaging
using the false discovery rate. Neuroimage, 15(4):870–878,
2002.

[3] Michael Hanke, Yaroslav O Halchenko, Per B Sederberg,
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